access icon free Sparse representation-based feature extraction combined with support vector machine for sense-through-foliage target detection and recognition

Owing to multipath propagation effects of rough surfaces, scattering from trees and ground tend to overwhelm the weak backscattering of targets, which makes it more difficult for sense-through-foliage target detection and recognition. In this study, a novel method to detect and recognise targets obscured by foliage based on sparse representation (SR) and support vector machine (SVM) is proposed. SR theory is applied to analysing the components of received radar signals and sparse coefficients are used to describe target features, the dimension of the sparse coefficients is reduced using principal component analysis (PCA). Then, an improved SVM classifier is developed to perform target detection and recognition. A chaotic differential evolution optimisation approach using tent map is developed to determine the parameters of SVM. The experimental results indicate that the proposed approach is an effective method for sense-through-foliage target detection and recognition, which can achieve higher accuracy than that of the differential evolution-optimised SVM, SVM, k-nearest neighbour and BP neural network (BPNN).

Inspec keywords: principal component analysis; support vector machines; backscatter; object detection; optimisation; neural nets; feature extraction; backpropagation; image representation

Other keywords: backscattering; sense-through-foliage target recognition; SVM; BP neural network; principal component analysis; k-nearest neighbour; multipath propagation; PCA; chaotic differential evolution optimisation; sparse representation; BPNN; support vector machine; sense-through-foliage target detection; feature extraction

Subjects: Image recognition; Knowledge engineering techniques; Optimisation techniques; Other topics in statistics; Neural computing techniques; Other topics in statistics; Optimisation techniques; Computer vision and image processing techniques

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 12. Liang, Q.: ‘Biologically-inspired target recognition in radar sensor networks’, EURASIP J. Wirel. Commun. Netw., 2010, Paper id: 523435, doi: 10.1155/2010/523435.
    25. 25)
      • 30. Alatas, B., Akin, E., Oaer, A.B.: ‘Chaos embedded particle swarm optimization algorithms’, Chaos Solitons and Fractals, 2009, 40, (4), pp. 17151734 (doi: 10.1016/j.chaos.2007.09.063).
    26. 26)
      • 23. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: ‘Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems’, IEEE J. Sel. Top. Signal Process., 2007, 1, (4), pp. 586597 (doi: 10.1109/JSTSP.2007.910281).
    27. 27)
      • 32. Imtiaz, H., Fattah, S.A.: ‘A wavelet-based dominant feature extraction algorithm for palm-print recognition’, Digit. Signal Process., 2013, 23, (1), pp. 244258 (doi: 10.1016/j.dsp.2012.06.016).
    28. 28)
      • 25. Paredes, J.L., Arce, G.R., Wang, Z.: ‘Ultra-wideband compressed sensing: channel estimation’, IEEE J. Sel. Top. Signal Process., 2007, 1, (3), pp. 383395 (doi: 10.1109/JSTSP.2007.906657).
    29. 29)
      • 3. Fleischman, J.G., Ayasli, S., Adams, E.M., Gosselin, D.R.: ‘Foliage penetration experiment. Part I: foliage attenuation and backscatter analysis of SAR imagery’, IEEE Trans. Aerosp. Electron. Syst., 1996, 32, (1), pp. 135144 (doi: 10.1109/7.481256).
    30. 30)
      • 14. Liu, H., Liu, C., Huang, Y.: ‘Adaptive feature extraction using sparse coding for machinery fault diagnosis’, Mech. Syst. Signal Process., 2011, 25, (2), pp. 558574 (doi: 10.1016/j.ymssp.2010.07.019).
    31. 31)
      • 26. Storn, R., Price, K.: ‘Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces’, J. Global Optim., 1997, 11, (4), pp. 341359 (doi: 10.1023/A:1008202821328).
    32. 32)
      • 20. Varewyck, M., Martens, J.: ‘A practical approach to model selection for support vector machines with a Gaussian kernel’, IEEE Trans. Syst. Man Cybern.t B, Cybern., 2011, 41, (2), pp. 330340 (doi: 10.1109/TSMCB.2010.2053026).
    33. 33)
      • 7. Liang, J., Liang, Q.: ‘UWB radar sensor networks detection of targets in foliage using short-time Fourier transform’. Proc. IEEE Int. Conf. Communications, June 2009, pp. 15.
    34. 34)
      • 22. Mallat, S., Zhang, Z.: ‘Matching pursuits with time-frequency dictionaries’, IEEE Trans. Signal Process., 1993, 41, (12), pp. 33973415 (doi: 10.1109/78.258082).
    35. 35)
      • 15. Yu, N., Qiu, T., Bi, F., Wang, A.: ‘Image features extraction and fusion based on joint sparse representation’, IEEE J. Sel. Top. Signal Process., 2011, 5, (5), pp. 10741082 (doi: 10.1109/JSTSP.2011.2112332).
    36. 36)
      • 8. Liang, Q., Zhang, B., Wu, X.: ‘UWB radar for target detection: DCT versus matched filter approaches’, IEEE Globecom, Workshop on Radar and Sonar Networks, Anaheim, CA, December 2012.
    37. 37)
      • 10. Liang, Q., Cheng, X., Samn, S.: ‘NEW: network-enabled electronic warfare for target recognition’, IEEE Trans. Aerosp. Electron. Syst., 2010, 46, (2), pp. 558568 (doi: 10.1109/TAES.2010.5461641).
    38. 38)
      • 27. Qin, A.K., Huang, V.L., Suganthan, P.N.: ‘Differential evolution algorithm with strategy adaptation for global numerical optimization’, IEEE Trans. Evol. Comput., 2009, 13, (2), pp. 398417 (doi: 10.1109/TEVC.2008.927706).
    39. 39)
      • 1. Liang, J., Liang, Q.: ‘Sense-through-foliage target detection using UWB radar sensor networks’, Pattern Recognit. Lett., 2010, 31, (11), pp. 14121421 (doi: 10.1016/j.patrec.2010.03.005).
    40. 40)
      • 6. Liang, J., Liang, Q.: ‘Outdoor propagation channel modeling in foliage environment’, IEEE Trans. Veh. Technol., 2010, 59, (3), pp. 22432252 (doi: 10.1109/TVT.2010.2043697).
    41. 41)
      • 21. Chen, S., Donoho, D., Saunders, M.: ‘Atomic decomposition by basis pursuit’, Soc. Ind. Appl. Math. Rev., 1998, 20, (1), pp. 3361.
    42. 42)
      • 28. Gilberto, A.S.S., Krohling, R.A., Cosme, R.C.: ‘A differential evolution approach for solving constrained min-max optimization problems’, Expert Syst. Appl., 2012, 39, (18), pp. 1344013450 (doi: 10.1016/j.eswa.2012.05.059).
    43. 43)
      • 31. Madzarov, G., Gjorgjevikj, D., Chorbev, I.: ‘A multi-class SVM classifier utilizing binary decision tree’, Int. J. Comput. Inf., 2009, 33, (2), pp. 225233.
    44. 44)
      • 2. Sheen, D.R., Malinas, N.P., Kletzli, D.W., Lewis, T.B., Roman, J.F.: ‘Foliage transmission measurements using a ground-based ultra-wideband (UWB) (300–1300 MHz) SAR system’, IEEE Trans. Geosci. Remote Sens., 1994, 32, (1), pp. 118130 (doi: 10.1109/36.285195).
    45. 45)
      • 5. Liang, Q.: ‘Radar sensor wireless channel modeling in foliage environment: UWB versus narrowband’, IEEE Sens. J., 2011, 11, (6), pp. 14481457 (doi: 10.1109/JSEN.2010.2097586).
    46. 46)
      • 11. Liang, Q.: ‘Automatic target recognition using waveform diversity in radar sensor networks’, Pattern Recognit. Lett., 2008, 29, (2), pp. 377381 (doi: 10.1016/j.patrec.2007.10.016).
    47. 47)
      • 33. Jin, X., Gupta, S., Mukherjee, K., Ray, A.: ‘Wavelet-based feature extraction using probabilistic finite state automata for pattern classification’, Pattern Recognit., 2011, 44, (7), pp. 13431356 (doi: 10.1016/j.patcog.2010.12.003).
    48. 48)
      • 19. Vapnik, V.: ‘The nature of statistical learning theory’, (Springer-Verlag, New York, 1995).
    49. 49)
      • 9. Liang, J., Liang, Q., Samn, S.W.: ‘A differential based approach for sense-through-foliage target detection using UWB radar sensor networks’. Proc. IEEE Int. Conf. Communications, 2008, pp. 19521956.
    50. 50)
      • 4. Kapoor, R., Tsihrintzis, G.A., Nandhakumar, N.: ‘Detection of obscured targets in heavy-tailed radar clutter using an ultra-wideband (UWB) radar and alpha stable clutter models’. Proc. 30th Asilomar Conf. Signals, Systems and Computers, November 1996, vol. 2, pp. 863867.
    51. 51)
      • 29. D.S Coelho, L., Bora, T.C., Lebensztajn, L.: ‘A chaotic approach of differential evolution optimization applied to loudspeaker design problem’, IEEE Trans. Magn., 2012, 48, (2), pp. 751754 (doi: 10.1109/TMAG.2011.2174204).
    52. 52)
      • 16. Guha, T., Ward, R.: ‘Learning sparse representations for human action recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (8), pp. 15761588 (doi: 10.1109/TPAMI.2011.253).
    53. 53)
      • 17. Rubinstein, R., Bruckstein, A.M., Elad, M.: ‘Dictionaries for sparse representation modeling’, Proc. IEEE, 2010, 98, (6), pp. 10451057 (doi: 10.1109/JPROC.2010.2040551).
    54. 54)
      • 13. Liang, Q.: ‘Radar sensor networks: algorithms for waveform design and diversity with application to ATR with delay-doppler uncertainty’, EURASIP J. Wirel. Commun. Netw., 2007, Paper id: 89103, doi: 10.1155/2007/89103.
    55. 55)
      • 24. Tropp, J., Gilbert, A.: ‘Signal recovery from random measurements via orthogonal matching pursuit’, IEEE Trans. Inf. Theory, 2007, 53, (12), pp. 46554666 (doi: 10.1109/TIT.2007.909108).
    56. 56)
      • 18. Jolliffe, I.T.: ‘Principal component analysis’, (Springer-Verlag, 2002, 2nd edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2013.0281
Loading

Related content

content/journals/10.1049/iet-spr.2013.0281
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading