Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Systematic approach in designing wavelet packet modulation-orthogonal frequency division multiplexing radar signal by applying the criterion of least-squares

In recent years, wavelet packet modulation-orthogonal frequency division multiplexing (WPM-OFDM) signals have been introduced for radar applications. These signals have some significant properties such as inherent high range resolution, high resistance of radar system against jamming reception and improved target detection performance in contrast with common traditional signals. However, there is no systematic method for designing WPM-OFDM signals to be used in radar applications. In the present study, the authors have started solving the problem of designing a WPM-OFDM radar signal under a criterion of minimising the least-squares error between designed and desired ambiguity functions. A thumbtack shape is assumed to be the ideal shape of the ambiguity function. In the following, an iterative algorithm is introduced to allocate a proper phase to the desired ambiguity function for obtaining better results. In this study, it is shown that this algorithm can reduce side-lobes, throughout the entire plane of the ambiguity function; therefore using the mentioned algorithm leads to having a desired signal for a radar application. Consequently, by extending the presented method, a pair of WPM-OFDM signals is simultaneously designed which obtain their cross ambiguity function to approximate a desired one under the criterion of least-squares.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 18. Vaidyanathan, P.P.: ‘Multirate systems and filter banks’ (Prentice Hall, Englewood Clis, NJ, 1992).
    14. 14)
      • 10. Sen, S., Nehorai, A.: ‘Adaptive design of OFDM radar signal with improved wideband ambiguity function’, IEEE Trans. Signal Process., 2010, 58, (2), pp. 928933 (doi: 10.1109/TSP.2009.2032456).
    15. 15)
      • 16. Mozeson, E., Levanon, N.: ‘Multicarrier radar signals with low peak-to-mean envelope power ratio’. IEE Proc. Radar Sonar Navig., 2003, 150, (2), pp. 7177 (doi: 10.1049/ip-rsn:20030263).
    16. 16)
      • 3. Mohseni, R., Sheikhi, A., Shirazi, A.M.: ‘Multicarrier constant envelope OFDM signal design for radar applications’, AEU-Int. J. Electron. Commun., 2010, 64, (11), pp. 9991008 (doi: 10.1016/j.aeue.2009.10.008).
    17. 17)
      • 22. Shensa, M.: ‘The discrete wavelet transform: wedding the a Trous and Mallat algorithms’, IEEE Trans. Signal Process., 1992, 40, (10), pp. 24642482 (doi: 10.1109/78.157290).
    18. 18)
      • 23. He, H., Stoica, P., Li, J.: ‘On synthesizing cross ambiguity functions’. Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), Prague, May 2011, pp. 35363539.
    19. 19)
      • 6. Sturm, C., Zwick, T., Wiesbeck, W.: ‘An OFDM system concept for joint radar and communications operations’. Vehicular Technology Conf., Barcelona, Spain, April 2009, pp. 15.
    20. 20)
      • 7. Sit, Y.L., Reichardt, L., Sturm, C., Zwick, T.: ‘Extension of the OFDM joint radar-communication system for a multipath, multiuser scenario’. IEEE Radar Conf., Kansas City, MO, May 2011, pp. 718723.
    21. 21)
      • 14. Lakshmanan, M.K., Nikookar, H.: ‘A review of wavelets for digital wireless communication’, J. Wirel. Pers. Commun., 2006, 37, (3–4), pp. 387420 (doi: 10.1007/s11277-006-9077-y).
    22. 22)
      • 19. Wang, W.G.: ‘OFDM waveform diversity design for MIMO SAR imaging’. Geoscience and Remote Sensing Symp. (IGARSS), Niagara Falls, ON, July 2012, pp. 20902093.
    23. 23)
      • 11. Sen, S., Tang, G., Nehorai, A.: ‘Multi-objective optimization-based OFDM radar waveform design for target detection’, IEEE Trans. Signal Process., 2011, 59, (2), pp. 639652 (doi: 10.1109/TSP.2010.2089628).
    24. 24)
      • 21. Vrhel, M., Lee, C., Unser, M.: ‘Fast continuous wavelet transform’. Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), Detroit, MI, May 1995, pp. 11651168.
    25. 25)
      • 15. Mohseni, R., Sheikhi, A., Shirazi, A.M.: ‘Wavelet packet based OFDM radar signals’. Int. Conf. Radar, Adelaide, SA, September 2008, pp. 552557.
    26. 26)
      • 17. Sussman, S.M.: ‘Least square synthesis of RADAR Ambiguity function’, IRE Trans. Inf. Theory, 1962, 8, (3), pp. 246254 (doi: 10.1109/TIT.1962.1057703).
    27. 27)
      • 1. Levanon, N., Mozeson, E.: ‘Radar signals’ (Wiley, Hoboken, NJ, 2004).
    28. 28)
      • 12. Sen, S., Nehorai, A.: ‘OFDM radar waveform design for sparsity-based multi-target tracking’. Waveform Diversity and Design Conf. (WDD), Niagara Falls, ON, August 2010, pp. 1822.
    29. 29)
      • 8. Garmatyuk, D., Schuerger, J., Morton, Y.T., Binns, K., Durbin, M., Kimani, J.: ‘Feasibility study of a multi-carrier dual-use imaging radar and communication system’. Radar Conf. EuRAD, Munich, Germany, October 2007, pp. 194197.
    30. 30)
      • 9. Sebt, M.A., Sheikhi, A., Nayebi, M.M.: ‘Orthogonal frequency-division multiplexing radar signal design with optimised ambiguity function and low peak-to-average power ratio’, IET Radar Sonar Navig., 2009, 3, (2), pp. 122132 (doi: 10.1049/iet-rsn:20080106).
    31. 31)
      • 20. Sen, S., Nehorai, A.: ‘OFDM MIMO radar with mutual-information waveform design for low-grazing angle tracking’, IEEE Trans. Signal Process., 2010, 58, (6), pp. 31523162 (doi: 10.1109/TSP.2010.2044834).
    32. 32)
      • 13. Linfoot, S.L., Ibrahim, M.K., Al-Akaidi, M.M.: ‘Orthogonal wavelet division multiplex: an alternative to OFDM’, IEEE Trans. Consum. Electron., 2007, 53, (2), pp. 278284 (doi: 10.1109/TCE.2007.381686).
    33. 33)
      • 2. De Maio, A., De Nicola, S., Huang, Y., Luo, Z.Q., Zhang, S.: ‘Design of phase codes for radar performance optimization with a similarity constraint’, IEEE Trans. Signal Process., 2009, 57, (2), pp. 610621 (doi: 10.1109/TSP.2008.2008247).
    34. 34)
      • 4. Kafshgari, S., Mohseni, R.: ‘The effect of target fluctuation on the OFDM radar detection performance’. 20th Telecommunications Forum (TELFOR), Belgrade, Serbia, November 2012, pp. 827830.
    35. 35)
      • 5. Sen, S., Nehorai, A.: ‘Target detection in clutter using adaptive OFDM radar’, IEEE Signal Process. Lett., 2009, 16, (7), pp. 592595 (doi: 10.1109/LSP.2009.2020470).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2013.0228
Loading

Related content

content/journals/10.1049/iet-spr.2013.0228
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address