Non-myopic sensor scheduling to track multiple reactive targets

Non-myopic sensor scheduling to track multiple reactive targets

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study addresses the sensor scheduling problem of selecting and assigning sensors dynamically for multi-target tracking. The authors goal is to trade off the tracking accuracy and the interception risk in a period of time. The interception risk is incurred by the fact that the emission energy originating from a sensor can be intercepted by the target during the tracking mission. To react to sensor emission, the targets are able to switch between dynamic models. This non-myopic sensor scheduling problem is formulated as a partially observable Markov decision process, where the one-step reward is constructed by combining the tracking error with the interception probability and the information state is tracked by the interacting multiple model extended Kalman filtering. A novel sampling approach using the unscented transformation is proposed for long-term reward approximation. Numerical simulations illustrate the validity of the proposed scheduling scheme.


    1. 1)
      • 1. Kreucher, C., Kastella, K., Hero, A.O.: ‘A Bayesian method for integrated multitarget tracking and sensor management’. Proc. Int. Conf. Information Fusion, Piscataway, NJ, USA, July 2003, pp. 132139.
    2. 2)
      • 2. Logothetis, A., Isaksson, A.: ‘On sensor scheduling via information theoretic criteria’. Proc. American Control Conf., San Diego, CA, USA, June 1999, pp. 24022406.
    3. 3)
    4. 4)
      • 4. Sunny, A., Kury, J.: ‘Distributed greedy scheduling for multihop wireless networks’. Proc. Seventh IEEE Int. Conf. Mobile Ad-hoc and Sensor Systems, San Francisco, CA, USA, November 2010, pp. 582587.
    5. 5)
    6. 6)
      • 6. Wang, H., Pottie, G., Yao, K., Estrin, D.: ‘Entropy-based sensor selection heuristic for target localization’. Proc. Third Int. Symp. Information Processing in Sensor Networks, Berkeley, CA, USA, April 2004, pp. 3645.
    7. 7)
      • 7. Hernandez, M.L., Kirubara, T., Bar-Shalom, Y.: ‘Efficient multi-sensor resource management using Cramér–Rao lower bounds’. Proc. SPIE Signal and Data Processing of Small Targets, 2002, vol. 4728, pp. 394409.
    8. 8)
    9. 9)
      • 9. Tian, K.S., Zhu, G.X.: ‘Sensor management based on fisher information gain’, J. Syst. Eng. Electron., 2006, 17, (3), pp. 31534.
    10. 10)
      • 10. Shogo, A., Yasushi, I., Koichi, H.: ‘Fast sensor scheduling for networked sensor systems’. Proc. 47th IEEE Conf. Decision and Control, Cancun, Mexico, December 2008, pp. 459463.
    11. 11)
    12. 12)
      • 12. Shogo, A., Yasushi, I., Koichi, H.: ‘Fast sensor scheduling for spatially distributed heterogeneous sensors’. Proc. American Control Conf., Saint Louis, MO, USA, June 2009, pp. 27852790.
    13. 13)
      • 13. Kreucher, C., Hero, A.O., Kastella, K., Chang, D.: ‘Efficient methods of non-myopic sensor management for multitarget tracking’. Proc. 43rd IEEE Conf. on Decision and Control, Paradise Island, Bahamas, December 2004, pp. 722727.
    14. 14)
      • 14. Kreucher, C., Hero, A.O.: ‘Monte Carlo methods for sensor management in target tracking’. Proc. IEEE Workshop on Nonlinear Statistical Signal Processing, Cambridge, UK, September 2006, pp. 232237.
    15. 15)
      • 15. He, Y., Chong, E.K.P.: ‘Sensor scheduling for target tracking: a Monte Carlo sampling approach’, Digital Signal Process., 2005, 16, (2006), pp. 533545.
    16. 16)
      • 16. He, Y., Chong, E.K.P.: ‘Sensor scheduling for target tracking in sensor networks’. Proc. 43rd IEEE Conf. Decision and Control, Paradise Island, Bahamas, December 2004, pp. 743748.
    17. 17)
      • 17. Li, Y., Krakow, L.W., Chong, E.K.P., Groom, K.N.: ‘Approximate stochastic dynamic programming for sensor scheduling to track multiple targets’, Digit. Signal Process., 2007, 19, (2009), pp. 978989.
    18. 18)
      • 18. Li, Y., Krakow, L.W., Chong, E.K.P., Groom, K.N.: ‘Dynamic sensor management for multisensor multitarget tracking’. Proc. Annual Conf. Information Sciences and Systems, Princeton, NJ, USA, March 2006, pp. 13971402.
    19. 19)
      • 19. Shogo, A., Yasushi, I., Koichi, H.: ‘Fast sensor scheduling with communication costs for sensor networks’. Proc. American Control Conf., Baltimore, MD, USA, June 2010, pp. 295300.
    20. 20)
      • 20. Zhang, S., Xiao, W.D., Marcelo, H.A.J., Chen, K.T.: ‘IMM filter based sensor scheduling for maneuvering target tracking in wireless sensor networks’. Proc. Int. Conf. Intelligent Sensors, Sensor Networks and Information, Melbourne, Qld, December 2007, pp. 287292.
    21. 21)
      • 21. Hero, A.O., Castan, D.A., Cochran, D., Kastella, K.: ‘Foundations and applications of sensor management’ (Springer Press, 2008).
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 25. Rafael, T.M., Miguel, A.Z., Antonio, F.G.: ‘IMM-EKF based road vehicle navigation with low cost GPS/INS’. Proc. Int. Conf. Multisensor Fusion and Integration for Intelligent Systems, Heidelberg, Germany, September 2006, pp. 433438.
    26. 26)
      • 26. Mahendra, M., Barbara, F.L.S.: ‘IMM estimator for ground target tracking with variable measurement sampling intervals’. Proc. Int. Conf. Information Fusion, Florence, Italy, July 2006, pp. 18.
    27. 27)
    28. 28)
    29. 29)
      • 29. Bertsekas, D.P., Castanon, D.A.: ‘Rollout algorithms for stochastic scheduling problems’, J. Heuristics, 1998, 5, (1999), pp. 89108.
    30. 30)
    31. 31)
      • 31. Ebcin, S., Veth, M.: ‘Tightly-coupled image-aided inertial navigation using the unscented Kalman filter’. 20th Int. Technical Meeting of the Satellite Division of the Institute of Navigation, September 2007, pp. 18511860.
    32. 32)
      • 32. Haykin, S.: ‘Kalman filtering and neural networks’ (John Wiley and Sons Press, New York, 2001).
    33. 33)
    34. 34)
      • 34. Suman, C., Richard, S.E.: ‘Information space receding horizon control’. IEEE Symp. Adaptive Dynamic Programming and Reinforcement Learning, Paris, April 2011, pp. 302309.
    35. 35)

Related content

This is a required field
Please enter a valid email address