access icon openaccess Fast mode decision scheme using sum of the absolute difference-based Bayesian model for the H.264/AVC video standard

H.264/AVC is the most widely used recent video coding standard. It provides a high encoding efficiency but it also has a high computational complexity. The block mode decision for motion estimation is the most time-consuming procedure. A complexity reduction method for the block mode decision procedure is proposed. To reduce the complexity, all block modes are divided into several candidate block mode groups. The sum of the absolute difference (SAD) value, including the motion cost of each mode, is used as a classification feature to divide the block modes into several groups. A refinement method using a Bayesian model based on the average SAD value is also proposed. For B-slices, a differential block mode allocation method is suggested. A different number of candidate modes are allocated for lists (list 0, list 1) based on the SAD value of each list after 16 × 16 block motion estimation. The proposed method achieves an average time-saving for the total encoding time of 65% for IPPP and 66.01% for the hierarchical-B structure.

Inspec keywords: block codes; image classification; motion estimation; computational complexity; decision theory; video coding; Bayes methods

Other keywords: Bayesian model; block motion estimation; refinement method; H.264-AVC video coding standard; complexity reduction method; fast mode decision scheme; SAD value; hierarchical-B-slices structure; sum of the absolute difference value; block mode decision procedure; differential block mode allocation method; IPPP; computational complexity; image classification

Subjects: Game theory; Image and video coding; Computer vision and image processing techniques; Video signal processing; Game theory; Computational complexity

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 1. ISO/IEC 14496-10: ‘Information technology – coding of audio-visual objects – Part 10: advanced video coding’, December 2003.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 14. Kim, J.-H., Kim, H.-S., Kim, B.-G., Kim, H.Y., Jeong, S.-Y., Choi, J.S.: ‘Fast block mode decision scheme for B-picture coding in H.264/AVC’. Int. Conf. Image Processing, September 2010, pp. 29732876.
    16. 16)
      • 13. Kawakami, K., Watanabe, Y., Nakayama, H.: ‘Adaptive spatial/temporal direct mode selection algorithm on H.264/AVC encoder’. IEEE Int. Conf. Consumer Electronics, January 2012, pp. 422423.
    17. 17)
      • 3. Lee, H., Lim, S.-C., Choi, H., Jeong, S., Kim, J., Choi, J.S.: ‘Enhanced block-based adaptive loop filter with multiple symmetric structures for video coding’, ETRI J., 2010, 32, (4), pp. 626629 (doi: 10.4218/etrij.10.0209.0487).
    18. 18)
      • 11. Kim, B.-G.: ‘Novel inter mode decision algorithm based on macro-block (MB) tracking for the P-slice in H.264/AVC video coding’, IEEE Trans. Circuits Syst. Video Technol., 2008, 18, (2), pp. 273279 (doi: 10.1109/TCSVT.2008.918121).
    19. 19)
      • 5. Lee, J., Jeon, B.: ‘Fast mode decision for H.264’. Proc. IEEE Int. Conf. Multimedia and Expo (ICME), 2004, vol. 2, pp. 11311134.
    20. 20)
      • 7. Wu, D., Wu, S., Lim, K.P., Pan, F., Lin, X.: ‘Block inter mode decision for fast encoding of H.264’. IEEE Int. Conf. Speech, Acoustics, and Signal Processing, May 2004, vol. III, pp. 181184.
    21. 21)
      • 20. Chiang, C-K., Pan, W-H., Hwang, C., Zhuang, S.S., Lai, S.H.: ‘Fast H.264 encoding based on statistical learning’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (9), pp. 13041315 (doi: 10.1109/TCSVT.2011.2147250).
    22. 22)
      • 10. Lee, J.Y., Park, H.W.: ‘A fast mode decision method based on motion cost and intra prediction cost for H.264/AVC’, IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (3), pp. 393402 (doi: 10.1109/TCSVT.2011.2163460).
    23. 23)
      • 15. Lu, G., Chen, L.: ‘Fast mode decision for H.264 based on DC coefficient’. Int. Conf. Information Technology, April 2010, pp. 382386.
    24. 24)
      • 9. Zeng, H., Cai, C., Ma, K.-K.: ‘Fast mode decision for H.264/AVC based on macro block motion activity’, IEEE Trans. Circuits Syst. Video Technol., 2009, 19, (4), pp. 111 (doi: 10.1109/TCSVT.2009.2022593).
    25. 25)
      • 8. Zhao, T., Wang, H., Kwong, S., Jay Kuo, C.-C.: ‘Fast mode decision based on mode adaptation’, IEEE Trans. Circuits Syst. Video Technol., 2010, 20, (5), pp. 697705 (doi: 10.1109/TCSVT.2010.2045812).
    26. 26)
      • 2. Jeong, S.Y., Lim, S.C., Lee, H.H., et al: ‘Highly efficient video codec for entertainment-quality’, ETRI J., 2011, 33, (2), pp. 145154 (doi: 10.4218/etrij.11.0110.0126).
    27. 27)
      • 12. Hilmi, B., Goswami, K., Lee, J.-H., Kim, B.-G.: ‘Fast Inter-mode decision algorithm for H.264/AVC using macroblock correlation and motion complexity analysis’. IEEE Int. Conf. Consumer Electronics, January 2012, pp. 9293.
    28. 28)
      • 6. Grecos, C., Yang, M.Y.: ‘Fast mode prediction for the baseline and main profiles in the H.264 video coding standard’, IEEE Trans. Multimedia, 2006, 8, (6), pp. 11251134 (doi: 10.1109/TMM.2006.884631).
    29. 29)
      • 4. Jun, D.S., Park, H.W.: ‘An efficient priority-based reference frame selection method for fast motion estimation in H.264/AVC’, IEEE Trans. Circuits Syst. Video Technol., 2010, 20, (8), pp. 11561161 (doi: 10.1109/TCSVT.2010.2057016).
    30. 30)
      • 18. Wu, D., Pan, F., Lim, K.P., et al: ‘Fast intermode decision in H.264/AVC video coding’, IEEE Trans. Circuits Syst. Video Technol., 2005, 15, (7), pp. 953958 (doi: 10.1109/TCSVT.2005.848304).
    31. 31)
      • 19. Yu, A.C.W., Martin, G.R., Park, H.: ‘Fast inter-mode selection in the H.264/AVC standard using a hierarchical decision process’, IEEE Trans. Circuits Syst. Video Technol., 2008, 18, (2), pp. 186195 (doi: 10.1109/TCSVT.2007.913970).
    32. 32)
      • 17. Moon, Y., Kim, G., Kim, J.: ‘An improved early detection algorithm for all-zero blocks in H.264 video encoding’, IEEE Trans. Circuits Syst. Video Technol., 2005, 15, (8), pp. 10531057 (doi: 10.1109/TCSVT.2005.852411).
    33. 33)
      • 21. Bjøntegaard, G.: ‘Calculation of average PSNR differences between RD-curves’. ITU-T VCEG-M33, VCEG 13th meeting, Austin, Texas, USA, April 2001.
    34. 34)
      • 1. ISO/IEC 14496-10: ‘Information technology – coding of audio-visual objects – Part 10: advanced video coding’, December 2003.
    35. 35)
      • 16. Sullivan, G.J., Wiegand, T.: ‘Rate-distortion optimization for video compression’, IEEE Signal Process. Mag., 1998, 15, (6), pp. 7490 (doi: 10.1109/79.733497).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2013.0179
Loading

Related content

content/journals/10.1049/iet-spr.2013.0179
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading