A method for joint angle and array gain-phase error estimation in Bistatic multiple-input multiple-output non-linear arrays

A method for joint angle and array gain-phase error estimation in Bistatic multiple-input multiple-output non-linear arrays

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The issue of joint angle and array gain-phase error estimation for a bistatic multiple-input multiple-output array is discussed in this study, and an algorithm for the joint estimation with non-linear arrays is proposed. First, the estimations of the transmit and receive direction matrices can be obtained via trilinear decomposition, then the relationship between the columns of the direction matrices is utilised to eliminate the influence of the gain-phase errors, and the angles can be estimated two by two via least squares. Finally, the array gain-phase error vectors can be estimated for calibration according to the estimated angles and direction matrices. The proposed algorithm requires no eigenvalue decomposition of the received data, and can achieve automatically paired estimations of the angles. Furthermore, no information of the gain-phase error is needed. The simulation results verify the algorithmic effectiveness of the proposed algorithm.


    1. 1)
      • 1. Fishler, E., Haimovich, A., Blum, R.S., Cimini, L.J., Chizhik, D., Valenzuela, R.A.: ‘MIMO radar: an idea whose time has come’. Proc. IEEE Radar Conf., April 2004, pp. 7178.
    2. 2)
      • 2. Li, J., Stoica, P.: ‘MIMO radar – diversity means superiority’. Proc. 14th Adaptive Sensor Array Process. Workshop (ASAP'06), Lincoln Lab, Mass, USA, December 2006, pp. 16.
    3. 3)
      • 3. Xu, L., Li, J., Stoica, P.: ‘Adaptive techniques for MIMO radar’. Proc Fourth Workshop on Sensor Array and Multichannel Signal Process., July 2006, pp. 258262.
    4. 4)
      • 4. Li, J., Liao, G., Griffiths, H.: ‘Bistatic MIMO radar space-time adaptive processing’. 2011 IEEE Int. Radar Conf., Westin Crown Center in Kansas City, Missouri, May 2011, pp. 498502.
    5. 5)
      • 5. Duofang, C., Baixiao, C., Guodong, Q.: ‘Angle estimation using ESPRIT in MIMO radar’, Electron. Lett., 2008, 44, (12), pp. 770771 (doi: 10.1049/el:20080276).
    6. 6)
      • 6. Chen, J., Gu, H., Su, W.: ‘Angle estimation using ESPRIT without pairing in MIMO radar’, Electron. Lett., 2008, 44, (24), pp. 14221423 (doi: 10.1049/el:20089089).
    7. 7)
      • 7. Zheng, G., Chen, B., Yang, M.: ‘Unitary ESPRIT algorithm for bistatic MIMO radar’, Electron. Lett., 2012, 48, (3), pp. 179181 (doi: 10.1049/el.2011.3657).
    8. 8)
      • 8. Yan, H., Li, J., Liao, G.: ‘Multitarget identification and localization using bistatic MIMO radar systems’, EURASIP J. Adv. Signal Process., article id 283483, 2008, 2008, (48), pp. 18.
    9. 9)
      • 9. Gao, X., Zhang, X., Feng, G., Wang, Z., Xu, D.: ‘On the MUSIC – derived approaches of angle estimation for bistatic MIMO radar’. 2009 Int. Conf. Wire, Networks and Information Systems (WNIS'09), Shanghai, China, 28–29 December, 2009, pp. 343346.
    10. 10)
      • 10. Zhang, X., Xu, L., Xu, L., et al: ‘Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC’, IEEE Commun. Lett., 2010, 14, (12), pp. 11611163 (doi: 10.1109/LCOMM.2010.102610.101581).
    11. 11)
      • 11. Bencheikh, M.L., Wang, Y., He, H.: ‘Polynomial root finding technique for joint DOA DOD estimation in bistatic MIMO radar’, Signal Process., 2010, 90, (9), pp. 27232730 (doi: 10.1016/j.sigpro.2010.03.023).
    12. 12)
      • 12. Nion, D., Sidiropoulos, N.D.: ‘A PARAFAC-based technique for detection and localization of multiple targets in a MIMO radar system’. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2009, pp. 20772080.
    13. 13)
      • 13. Zhang, X., Xu, Z., Xu, L., Xu, D.: ‘Trilinear decomposition-based transmit angle and receive angle estimation for multiple-input multiple-output radar’, IET Radar Sonar Navig., 2011, 5, (6), pp. 626631 (doi: 10.1049/iet-rsn.2010.0265).
    14. 14)
      • 14. Dai, J., Zhao, D., Ji, X.: ‘A sparse representation method for DOA estimation with unknown mutual coupling’, IEEE Antennas Wirel. Propag. Lett., 2012, 1, (1), pp. 12101213 (doi: 10.1109/LAWP.2012.2223651).
    15. 15)
      • 15. Lin, M., Yang, L.: ‘Blind calibration and DOA estimation with uniform circular arrays in the presence of mutual coupling’, IEEE Antennas Wirel. Propag. Lett., 2006, 5, (1), pp. 315318 (doi: 10.1109/LAWP.2006.878898).
    16. 16)
      • 16. Liu, X.L., Liao, G.S.: ‘Multitarget localization and estimation of gain-phase error for bistatic MIMO radar’, Acta Electron. Sin., 2011, 39, (3), pp. 596601.
    17. 17)
      • 17. Guo, Y.D., Zhang, Y.S., Tong, N.N.: ‘ESPRIT-like angle estimation for bistatic MIMO radar with gain and phase uncertainties’, Electron. Lett., 2011, 47, (17), pp. 996997 (doi: 10.1049/el.2011.1462).
    18. 18)
      • 18. Liu, A.F., Liao, G.S.: ‘An eigenstructure method for estimating DOA and sensor gain-phase errors’, IEEE Trans. Signal Process., 2011, 59, (12), pp. 59445956 (doi: 10.1109/TSP.2011.2165064).
    19. 19)
      • 19. Li, J., Stoica, P.: ‘MIMO radar signal processing’ (Wiley–IEEE Press, 2008), pp. 158162.
    20. 20)
      • 20. Bekkerman, I., Tabrikian, J.: ‘Target detection and localization using MIMO radars and sonars’, IEEE Trans. Signal Process., 2006, 54, (10), pp. 38733883 (doi: 10.1109/TSP.2006.879267).
    21. 21)
      • 21. Sidiropoulos, N.D., Bro, R., Giannakis, G.B.: ‘Parallel factor analysis in sensor array processing’, IEEE Trans. Signal Process., 2000, 48, (8), pp. 23772388 (doi: 10.1109/78.852018).
    22. 22)
      • 22. Kruskal, J.B.: ‘Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics’, Linear Algebr. Appl., 1977, 18, pp. 95138 (doi: 10.1016/0024-3795(77)90069-6).
    23. 23)
      • 23. Sidiropoulos, N.D., Giannakis, G.B., Bro, R.: ‘Blind PARAFAC receivers for DS-CDMA systems’, IEEE Trans. Signal Process., 2000, 48, (3), pp. 810823 (doi: 10.1109/78.824675).
    24. 24)
      • 24. Rong, Y., Vorobyov, S.A., Gershman, A.B., Sidiropoulos, N.D.: ‘Blind spatial signature estimation via time-varying user power loading and parallel factor analysis’, IEEE Trans. Signal Process., 2005, 53, (5), pp. 16971710 (doi: 10.1109/TSP.2005.845441).
    25. 25)
      • 25. Bro, R., Sidiropoulos, N.D., Giannakis, G.B.: ‘A fast least squares algorithm for separating trilinear mixtures’. Int. Workshop Independent Component Analysis and Blind Signal Separation, Aussois, France, January 1999, pp. 289294.
    26. 26)
      • 26. Wax, M.: ‘Detection of the number of coherent signals by the MDL principle’, IEEE Trans. Acoust. Speech Signal Process., 1989, 37, (8), pp. 11901196 (doi: 10.1109/29.31267).
    27. 27)
      • 27. Wu, H.T.: ‘Source number estimator using Gerschgorin disks’, Acoust Speech Signal Process., 1994, (ICASSP-94), 1994, 4, pp. 261264.
    28. 28)
      • 28. Xin, J., Zheng, N., Sano, A.: ‘Simple and efficient nonparametric method for estimating the number of signals without eigendecomposition’, IEEE Trans. Signal Process., 2007, 55, (4), pp. 14051420 (doi: 10.1109/TSP.2006.889982).
    29. 29)
      • 29. Stoica, P., Nehorai, A.: ‘Performance study of conditional and unconditional direction-of-arrival estimation’, IEEE Trans. Signal Process., 1990, 38, (10), pp. 17831795.

Related content

This is a required field
Please enter a valid email address