http://iet.metastore.ingenta.com
1887

Dynamic error spectrum for estimation performance evaluation: a case study on interacting multiple model algorithm

Dynamic error spectrum for estimation performance evaluation: a case study on interacting multiple model algorithm

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The commonly used root-mean-square error for estimation performance evaluation is easily dominated by large error terms. So many new alternative absolute metrics have been provided in X. R. Li's work. However, each of these metrics only reflects one narrow aspect of estimation performance, respectively. A comprehensive measure, error spectrum, was presented aggregating all these incomprehensive measures. However, when being applied to dynamic systems, this measure will have three dimensions over the total time span, which is not intuitive and difficult to be analysed. To overcome its drawbacks, a new metric, dynamic error spectrum (DES), is proposed in this study to extend the error spectrum measure to dynamic systems. Three forms under different application backgrounds are given, one of which is balanced taking into account both good and bad behaviour of an estimator and so can provide more impartial evaluation results. It can be applied to a variety of dynamic systems directly. Then the challenge in performance evaluation of the interacting multiple model (IMM) algorithm is considered, and the IMM algorithm is chosen as the testing case to illustrate the superiority of the DES metric. The simulation results validate its utility and effectiveness.

References

    1. 1)
      • 1. Li, X.R., Zhao, Z.L.: ‘Measures of performance for evaluation of estimators and filters’. Proc. 2001 SPIE Conf. Signal and Data Processing of Small Targets, November 2001, pp. 530541.
    2. 2)
      • 2. Li, X.R., Zhao, Z.L.: ‘Evaluation of estimation algorithms. Part I: incomprehensive measures of performance’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (4), pp. 13401358 (doi: 10.1109/TAES.2006.314576).
    3. 3)
      • 3. Li, X.R., Zhao, Z.L., Duan, Z.S.: ‘Error spectrum and desirability level for estimation performance evaluation’. Proc. Workshop on Estimation, Tracking and Fusion: A Tribute to Fred Daum, Monterey, CA, USA, May 2007.
    4. 4)
      • 4. Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: ‘Estimation with applications to tracking and navigation: theory, algorithms, and software’ (Wiley, New York, 2001).
    5. 5)
      • 5. Bar-Shalom, Y.: ‘Multitarget-multisensor tracking: advanced applications’ (Artech House, Norwood, MA, 1992).
    6. 6)
      • 6. Li, X.R., Jilkov, V.P.: ‘Survey of maneuvering target tracking. Part V: multiple-model methods’, IEEE Trans. Aerosp. Electron. Syst., 2005, 41, (4), pp. 12551321 (doi: 10.1109/TAES.2005.1561886).
    7. 7)
      • 7. Maybeck, P.S.: ‘Stochastic models, estimation and control’ (Academic Press, New York, 1982).
    8. 8)
      • 8. Zhang, Z., Ji, L., Huang, Z., Wu, J.: ‘Multi-model adaptation for thigh movement estimation using accelerometers’, IET Signal Process., 2011, 5, (8), pp. 709716 (doi: 10.1049/iet-spr.2010.0146).
    9. 9)
      • 9. Sigalov, D., Michaeli, T., Oshman, Y.: ‘A unified approach to state estimation problems under data and model uncertainties’. Proc. 15th Int. Conf. Information Fusion, 2012, pp. 25692576.
    10. 10)
      • 10. Li, W., Jia, Y.: ‘State estimation for jump Markov linear systems by variational Bayesian approximation’, IET Control Theory Appl., 2012, 6, (2), pp. 319326 (doi: 10.1049/iet-cta.2011.0167).
    11. 11)
      • 11. Lan, J., Li, X.R., Jilkov, V.P., Mu, C.: ‘Second-order Markov chain based multiple-model algorithm for maneuvering target tracking’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (1), pp. 319 (doi: 10.1109/TAES.2013.6404088).
    12. 12)
      • 12. Blom, H.A.P.: ‘An efficient filter for abruptly changing systems’. Proc. 23rd IEEE Conf. Decision and Control, Las, Vegas, NV, December 1984, pp. 656658.
    13. 13)
      • 13. Blom, H.A.P., Bar-Shalom, Y.: ‘The interacting multiple model algorithm for systems with Markovian switching coefficients’, IEEE Trans. Autom. Control, 1988, 33, (8), pp. 780783 (doi: 10.1109/9.1299).
    14. 14)
      • 14. Bar-Shalom, Y., Challa, S., Blom, H.A.P.: ‘IMM estimator versus optimal estimator for hybrid systems’, IEEE Trans. Aerosp. Electron. Syst., 2005, 41, (3), pp. 986991 (doi: 10.1109/TAES.2005.1541443).
    15. 15)
      • 15. Guu, J.A., Wei, C.H.: ‘Maneuvering target tracking using IMM method at high measurement frequency’, IEEE Trans. Aerosp. Electron. Syst., 1991, 27, (3), pp. 514519 (doi: 10.1109/7.81433).
    16. 16)
      • 16. Johnston, L.A., Krishnamurthy, V.: ‘An improvement to the interacting multiple model (IMM) algorithm’, IEEE Trans. Signal Process., 2001, 49, (12), pp. 29092923 (doi: 10.1109/78.969500).
    17. 17)
      • 17. Nadarajah, N., Tharmarasa, R., McDonald, M., Kirubarajan, T.: ‘IMM forward filtering and backward smoothing for maneuvering target tracking’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (3), pp. 26732678 (doi: 10.1109/TAES.2012.6237617).
    18. 18)
      • 18. Benoudnine, H., Keche, M., Ouamri, A., Woolfson, M.: ‘New efficient schemes for adaptive selection of the update time in the IMMJPDAF’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (1), pp. 197214 (doi: 10.1109/TAES.2012.6129630).
    19. 19)
      • 19. Seah, C., Hwang, I.: ‘Algorithm for performance analysis of the IMM algorithm’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (2), pp. 11141124 (doi: 10.1109/TAES.2011.5751246).
    20. 20)
      • 20. Drummond, O.E., Li, X.R., He, C.: ‘Comparison of various static multiple-model estimation algorithms’. Proc. 1998 SPIE Conf. Signal and Data Processing of Small Targets, April 1998, vol. 3373, pp. 510527.
    21. 21)
      • 21. Busch, M.T., Blackman, S.S.: ‘Evaluation of IMM filtering for an air defence system application’. Proc. 1995 SPIE Conf. Signal and Data Processing of Small Targets, September 1995, vol. 2561, pp. 435447.
    22. 22)
      • 22. Seah, C.E., Hwang, I.: ‘Performance analysis of Kalman filter based hybrid estimation algorithms’. Proc. 17th IFAC World Congress, Seoul, Korea, July 2008, pp. 1349813503.
    23. 23)
      • 23. Osborne, R.W., Blair, W.D.: ‘Update to the hybrid conditional averaging performance prediction of the IMM algorithm’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (4), pp. 29672974 (doi: 10.1109/TAES.2011.6034677).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2013.0134
Loading

Related content

content/journals/10.1049/iet-spr.2013.0134
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address