Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Competitive linear parallel interference cancellation detection based on monotone line-search techniques

In this study, a competitive linear parallel interference cancellation (LPIC) detector that is memory efficient, enjoys fast convergence and low complexity and can be used to approximate the decorrelator/minimum-mean-square error detector in large-scale communication systems is proposed. Similar to the non-monotone gradient-based LPIC detectors developed recently by Bentrcia and Alshebeili, the proposed detector maintains its efficiency and does not break down quickly if matrix–vector products are not performed accurately. However, unlike the previous detectors, the proposed detector relies on a monotone line-search technique which renders it more attractive because early stopping methods such as the L-curve method can be used to stop the LPIC iterations prior to convergence in order to avoid the noise enhancement effect. Simulation results agree well with the authors theoretical findings.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 8. Dai, Y.H., Yuan, Y.X.: ‘Alternate minimization gradient method’, IMA J. Numer. Anal., 2003, 23, (3), pp. 377393 (doi: 10.1093/imanum/23.3.377).
    12. 12)
      • 5. Sreedhar, D., Chockalingam, A.: ‘MMSE receiver for multiuser interference cancellation in uplink OFDMA’. Proc. IEEE VTC ‘06, May 2006, pp. 21252129.
    13. 13)
      • 3. Honig, M.L.: ‘Advances in multiuser detection’ (Wiley Series in Telecommunications and Signal Processing, 2009) ISBN: 9780470473801, Publication Date: 19–08–2009.
    14. 14)
      • 9. Zhou, B., Gao, L., Dai, Y.-H.: ‘Gradient methods with adaptive step-sizes’, Comput. Optim. Appl., 2006, 35, (1), pp. 6986 (doi: 10.1007/s10589-006-6446-0).
    15. 15)
      • 18. Hansen, P.C.: ‘Rank-deficient and discrete ill-posed problems’ (SIAM, Philadelphia, 1998).
    16. 16)
      • 15. Luengo, F., Raydan, M.: ‘Gradient method with dynamical retards for large-scale optimization problems’, Electron. Trans. Numer. Anal. (ETNA), 2003, 16, pp. 186193.
    17. 17)
      • 17. Dai, Y.-H., Fletcher, R.: ‘Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming’, Numer. Math., 2005, 100, (1), pp. 2147 (doi: 10.1007/s00211-004-0569-y).
    18. 18)
      • 19. Qu, P., Zhong, K., Zhang, B., Wang, J., Shen, G.X.: ‘Convergence behavior of iterative SENSE reconstruction with non-Cartesian trajectories’, Magn. Reson. Med., 2005, 54, pp. 10401045 (doi: 10.1002/mrm.20648).
    19. 19)
      • 13. Yuan, Y.-X.: ‘Quasi-Newton mthods’ (Wiley Encyclopedia of Operations Research and Management Science, 2011).
    20. 20)
      • 7. van den Doel, K., Ascher, U.: ‘The chaotic nature of faster gradient descent methods’, J. Sci. Comput., 2012, 51, (3), pp. 560581 (doi: 10.1007/s10915-011-9521-3).
    21. 21)
      • 1. Bentrcia, A., Alshebeili, S.: ‘Fast communication: new linear PIC detectors based on non-monotone line-search techniques’, Signal Process., 2012, 92, (12), pp. 30853090 (doi: 10.1016/j.sigpro.2012.06.019).
    22. 22)
      • 14. Raydan, M.: ‘On the Barzilai and Borwein choice of step length for the gradient method’, IMAJNA, 1993, 13, pp. 321326.
    23. 23)
      • 12. Bentrcia, A., Zerguine, A.: ‘A new linear group-wise parallel interference cancellation detector’, Wirel. Pers. Commun., 2009, 49, (1), pp. 2334 (doi: 10.1007/s11277-008-9553-7).
    24. 24)
      • 10. Jiang, T., song, L., Zang, Y.: ‘Orthogonal frequency division multiple access fundamentals and applications’ (Auerbach Publications, 2010), Print ISBN: 978-1-4200-8824-3, chapter 14, pp. 376.
    25. 25)
      • 20. Hansen, P.C., Jensen, T.K., Rodriguez, G.: ‘An adaptive pruning algorithm for the discrete L-curve criterion’, J. Comput. Appl. Math., 2006, 198, (2), pp. 483492 (doi: 10.1016/j.cam.2005.09.026).
    26. 26)
      • 2. Hoydis, J., ten Brink, S., Debbah, M.: ‘Massive MIMO in the UL/DL of cellular networks: how many antennas do we need?’, IEEE J. Sel. Areas Commun., 2013, 31, (2), pp. 160171 (doi: 10.1109/JSAC.2013.130205).
    27. 27)
      • 4. IEEE Standard for Local and Metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, The Institute of Electrical and Electronics Engineering, Inc. Std. IEEE 802.16E-2005.
    28. 28)
      • 11. Manohar, S., Sreedhar, D., Tikiya, V., Chockalingam, A.: ‘Cancellation of multiuser interference due to carrier frequency offsets in uplink OFDMA’, IEEE Trans. Wirel. Commun., 2007, 6, (7), pp. 25602571 (doi: 10.1109/TWC.2007.05905).
    29. 29)
      • 16. Dai, Y.H., Hager, W.W., Schittkowski, K., Zhang, H.: ‘The cyclic Barzilai-Borwein method for unconstrained optimization’, IMAJNA, 2006, 26, pp. 604627.
    30. 30)
      • 6. Lee, K., Lee, I.: ‘CFO compensation for uplink OFDMA systems with conjugated gradient’. Proc. ICC ’11, June 2011.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2013.0096
Loading

Related content

content/journals/10.1049/iet-spr.2013.0096
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address