Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Sparsity-based space–time adaptive processing using complex-valued Homotopy technique for airborne radar

In this study, a novel sparsity-based space–time adaptive processing algorithm based on the complex-valued Homotopy technique is proposed for airborne radar applications. The proposed algorithm firstly extends the existing standard real-valued Homotopy method to a more general complex-valued application using the gradient approaches. By exploiting the sparsity of the clutter spectrum in the whole spatiotemporal plane, the proposed algorithm recovers the clutter spectrum via the proposed complex Homotopy algorithm and then uses it to estimate the clutter covariance matrix, followed by the space–time filtering and the target detection. Furthermore, the implementations of the proposed algorithm are detailed. The computational complexity analysis shows that the proposed algorithm has a lower-computational complexity than the existing complex-valued Homotopy algorithm. Simulation results show that the proposed algorithm converges at a very fast speed (only 4–6 snapshots in the authors simulations) and provides both excellent detection performance and easy parameter settings.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 37. Salman Asif, M.: ‘Primal dual pursuit a homotopy based algorithm for the dantzig selector’. MS thesis, Georgia Institute of Technology, August2008.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 1. Ward, J.: ‘Space-time adaptive processing for airborne radar’. Technical Report, 1015, MIT Lincoln Laboratory, Lexington, MA, December1994.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 15. Maria, S., Fuchs, J.J.: ‘Application of the global matched filter to STAP data an efficient algorithmic approach’. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2006, pp. 1419.
    30. 30)
      • 29. Daubechies, I., Defrise, M., Mol, C.: ‘An iterative thresholding algorithm for linear inverse problems with a sparsity constraint’, Commun. Pure Appl. Math., 2004, 57, pp. 14131457 (doi: 10.1002/cpa.20042).
    31. 31)
      • 36. Salman Asif, M., Romberg, J.: ‘Dynamic updating for l1 minimization’, IEEE J. Sel. Top. Signal Process., 2010, 4, (2), pp. 421434 (doi: 10.1109/JSTSP.2009.2039174).
    32. 32)
      • 5. Goldstein, J.S., Reed, I.S.: ‘Theory of partially adaptive radar’, IEEE Trans. Aerosp. Electron. Syst., 1997, 33, (4), pp. 13091325 (doi: 10.1109/7.625132).
    33. 33)
      • 37. Salman Asif, M.: ‘Primal dual pursuit a homotopy based algorithm for the dantzig selector’. MS thesis, Georgia Institute of Technology, August2008.
    34. 34)
      • 28. Tropp, J.A., Wright, J.: ‘Computational methods for sparse solution of linear inverse problems’. Proc. IEEE, 2010, vol. 98, no. 6, pp. 948958.
    35. 35)
      • 34. Malioutov, D.M., Çetin, M., Willsky, A.S.: ‘Homotopy continuation for sparse signal representation’. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Philadelphia, PA, March 2005, pp. 733736.
    36. 36)
      • 39. Tropp, J.A.: ‘Just relax: convex programming methods for identifying sparse signals in noise’, IEEE Trans. Inf. Theory, 2006, 52, (3), pp. 10301051 (doi: 10.1109/TIT.2005.864420).
    37. 37)
      • 14. Wicks, M.C., Rangaswamy, M., Adve, R., Hale, T.B.: ‘Space-time adaptive processing: a knowledge-based perspective for airborne radar’, IEEE Signal Process. Mag., 2006, 23, (1), pp. 5165 (doi: 10.1109/MSP.2006.1593337).
    38. 38)
      • 2. Klemm, R.: ‘Principles of space-time adaptive processing’ (Institute of Electrical Engineering, London, UK, 2006).
    39. 39)
      • 19. Yang, Z., Li, X., Wang, H.: ‘Space-time adaptive processing based on weighted regularized sparse recovery’, Prog. Electromagn. Res. B, 2012, 42, pp. 245262.
    40. 40)
      • 16. Sun, K., Meng, H., Wang, Y., Wang, X.: ‘Direct data domain STAP using sparse representation of clutter spectrum’, Signal Process., 2011, 91, (9), pp. 22222236 (doi: 10.1016/j.sigpro.2011.04.006).
    41. 41)
      • 32. Osborne, M.R., Presnell, B., Turlach, B.A.: ‘A new approach to variable selection in least squares problems’, IMA J. Numer. Anal., 2000, 20, pp. 389403 (doi: 10.1093/imanum/20.3.389).
    42. 42)
      • 8. Fa, R., de Lamare, R.C.: ‘Reduced-rank STAP algorithms using joint iterative optimization of filters’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (3), pp. 16681684 (doi: 10.1109/TAES.2011.5937257).
    43. 43)
      • 20. Sun, K., Zhang, H., Li, G., Meng, H., Wang, X.: ‘A novel STAP algorithm using sparse recovery technique’. Proc. IGARSS, 2009, pp. 336339.
    44. 44)
      • 30. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: ‘Sparse reconstruction by separable approximation’, IEEE Trans. Signal Process., 2009, 57, (7), pp. 24792493 (doi: 10.1109/TSP.2009.2016892).
    45. 45)
      • 38. Liu, C., Zakharov, Y.V., Chen, T.: ‘Broadband underwater localization of multiple sources using basis pursuit de-noising’, IEEE Trans. Signal Process., 2012, 60, (4), pp. 17081717 (doi: 10.1109/TSP.2011.2181506).
    46. 46)
      • 18. Li, J., Zhu, X., Stoica, P., Rangaswamy, M.: ‘High resolution angle-Doppler imaging for MTI radar’, IEEE Trans. Aerosp. Electron. Syst., 2010, 46, (3), pp. 15441556 (doi: 10.1109/TAES.2010.5545209).
    47. 47)
      • 27. Chen, S., Donoho, D., Saunders, M.: ‘Atomic decomposition by basis pursuit’, SIAM J. Sci. Comput., 1998, 20, (1), pp. 3361 (doi: 10.1137/S1064827596304010).
    48. 48)
      • 35. Donoho, D.L., Tsaig, Y.: ‘Fast solution of l1-norm minimization problems when the solution may be sparse’, IEEE Trans. Signal Process., 2008, 54, (11), pp. 47894812.
    49. 49)
      • 13. Guerci, J.R., Baranoski, E.J.: ‘Knowledge-aided adaptive radar at DARPA: an overview’, IEEE Signal Process. Mag., 2006, 23, (1), pp. 4150 (doi: 10.1109/MSP.2006.1593336).
    50. 50)
      • 9. Fa, R., de Lamare, R.C., Wang, L.: ‘Reduced-rank STAP schemes for airborne radar based on switched joint interpolation, decimation and filtering algorithm’, IEEE Trans. Signal Process., 2010, 58, (8), pp. 41824194 (doi: 10.1109/TSP.2010.2048212).
    51. 51)
      • 10. Roman, J.R., Rangaswamy, M., Davis, D.W., Zhang, Q., Himed, B., Michels, J.H.: ‘Parametric adaptive matched filter for airborne radar applications’, IEEE Trans. Aerosp. Electron. Syst., 2000, 36, (2), pp. 677692 (doi: 10.1109/7.845259).
    52. 52)
      • 25. Parker, J.T., Potter, L.C.: ‘A Bayesian perspective on sparse regularization for STAP post-processing’. Proc. IEEE Radar Conf., May 2010, pp. 14711475.
    53. 53)
      • 11. Yang, Z., de Lamare, R.C., Li, X.: ‘L1-regularized STAP algorithms with a generalized sidelobe canceler architecture for airborne radar’, IEEE Trans. Signal Process., 2012, 60, (2), pp. 674686 (doi: 10.1109/TSP.2011.2172435).
    54. 54)
      • 3. Haimovich, A.: ‘The eigencanceler: adaptive radar by eigenanalysis methods’, IEEE Trans. Aerosp. Electron. Syst., 1996, 32, (2), pp. 532542 (doi: 10.1109/7.489498).
    55. 55)
      • 26. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: ‘Applications of second-order cone programming’, Linear Algebr. Appl., 1998, 284, (1–2), pp. 193228 (doi: 10.1016/S0024-3795(98)10032-0).
    56. 56)
      • 12. Yang, Z., de Lamare, R.C., Li, X.: ‘Sparsity-aware space-time adaptive processing algorithms with L1-norm regularization for airborne radar’, IET Signal Process., 2012, 6, (5), pp. 413423 (doi: 10.1049/iet-spr.2011.0254).
    57. 57)
      • 22. Yang, Z., Li, X., Wang, H., Jiang, W.: ‘On clutter sparsity analysis in space-time adaptive processing airborne radar’, Geosci. Remote Sens. Lett., 2013, 10, (5), pp. 12141218 (doi: 10.1109/LGRS.2012.2236639).
    58. 58)
      • 1. Ward, J.: ‘Space-time adaptive processing for airborne radar’. Technical Report, 1015, MIT Lincoln Laboratory, Lexington, MA, December1994.
    59. 59)
      • 4. Wang, H., Cai, L.: ‘On adaptive spatial-temporal processing for airborne surveillance radar systems’, IEEE Trans. Aerosp. Electron. Syst., 1994, 30, (3), pp. 660670 (doi: 10.1109/7.303737).
    60. 60)
      • 24. Sen, S.: ‘OFDM radar space-time adaptive processing by exploiting spatio-temporal sparsity’, IEEE Trans. Signal Process., 2013, 61, (1), pp. 118130 (doi: 10.1109/TSP.2012.2222387).
    61. 61)
      • 31. Yang, A.Y., Ganesh, A., Zhou, Z., Shankar Sastry, S., Ma, Y.: ‘A review of fast l1-minimization algorithms for robust face recognition’, 2010[Online]. Available at http://www.arxiv.org/abs/1007.3753v2.
    62. 62)
      • 21. Yang, Z., Liu, Z., Li, X., Nie, L.: ‘Performance analysis of STAP algorithms based on fast sparse recovery techniques’, Prog. Electromagn. Res. B, 2012, 41, pp. 251268.
    63. 63)
      • 23. Yang, Z., Li, X., Wang, H., Jiang, W.: ‘Adaptive clutter suppression based on iterative adaptive approach for airborne radar’, Signal Process., 2013, 93, (12), pp. 35673577 (doi: 10.1016/j.sigpro.2013.03.033).
    64. 64)
      • 33. Hastie, B.E.T., Johnstone, I.M., Tibshirani, R.: ‘Least angle regression’, Ann. Stat., 2004, 32, (2), pp. 407499 (doi: 10.1214/009053604000000067).
    65. 65)
      • 6. Goldstein, J.S., Reed, I.S., Zulch, P.A.: ‘Multistage partially adaptive STAP CFAR detection algorithm’, IEEE Trans. Aerosp. Electron. Syst., 1999, 35, (2), pp. 645661 (doi: 10.1109/7.766945).
    66. 66)
      • 7. Pados, D.A., Karystinos, G.N.: ‘An iterative algorithm for the computation of the MVDR filter’, IEEE Trans. Signal Process., 2001, 49, (2), pp. 290300 (doi: 10.1109/78.902111).
    67. 67)
      • 17. Selesnick, I.W., Pillai, S.U., Li, K.Y., Himed, B.: ‘Angle-Doppler processing using sparse regularization’. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2010, pp. 27502753.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2013.0069
Loading

Related content

content/journals/10.1049/iet-spr.2013.0069
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address