access icon free Linear filtering methods for fixed rate quantisation with noisy symmetric error channels

This study considers linear filtering methods for minimising the end-to-end average distortion of a fixed-rate source quantisation system. For the source encoder, both scalar and vector quantisation are considered. The codebook index output by the encoder is sent over a noisy discrete memoryless channel whose statistics could be unknown at the transmitter. At the receiver, the code vector corresponding to the received index is passed through a linear receive filter, whose output is an estimate of the source instantiation. Under this setup, an approximate expression for the average weighted mean-square error (WMSE) between the source instantiation and the reconstructed vector at the receiver is derived using high-resolution quantisation theory. Also, a closed-form expression for the linear receive filter that minimises the approximate average WMSE is derived. The generality of framework developed is further demonstrated by theoretically analysing the performance of other adaptation techniques that can be employed when the channel statistics are available at the transmitter also, such as joint transmit–receive linear filtering and codebook scaling. Monte Carlo simulation results validate the theoretical expressions, and illustrate the improvement in the average distortion that can be obtained using linear filtering techniques.

Inspec keywords: filtering theory; receivers; statistics; transmitters; Monte Carlo methods; vector quantisation

Other keywords: end-to-end average distortion; channel statistics; linear filtering methods; linear receive filter; approximate expression; vector quantisations; receiver; Monte Carlo simulation; WMSE; scalar quantisations; codebook scaling; noisy discrete memoryless channel; noisy symmetric error channels; weighted mean square error; codebook index output; transmitter; joint transmit–receive linear filtering; fixed-rate source quantisation system; high-resolution quantisation theory

Subjects: Filtering methods in signal processing; Codes; Other topics in statistics; Monte Carlo methods

References

    1. 1)
      • 2. Gersho, A.: ‘Asymptotically optimal block quantization’, IEEE Trans. Inf. Theory, 1979, IT-25, pp. 373380 (doi: 10.1109/TIT.1979.1056067).
    2. 2)
      • 19. Murthy, C.R.: ‘Receiver only optimized vector quantization for noisy channels’. Proc. IEEE PIMRC, 2008, pp. 15.
    3. 3)
      • 9. Chang, W.-W., Hsu, H.-I.: ‘Constrained VQ codebook design for noisy channels’, Electron. Lett., 2001, 37, pp. 662664 (doi: 10.1049/el:20010419).
    4. 4)
      • 17. Yu, X., Wang, H., Yang, E.-H.: ‘Design and analysis of optimal noisy channel quantization with random index assignment’, IEEE Trans. Inf. Theory, 2010, 56, pp. 57965804 (doi: 10.1109/TIT.2010.2068891).
    5. 5)
      • 8. Zeger, K., Gersho, A.: ‘Zero redundancy channel coding in vector quantisation’, Electron. Lett., 1987, 23, pp. 654656 (doi: 10.1049/el:19870468).
    6. 6)
      • 7. Görtz, N., Kliewer, J.: ‘Memory efficient adaptation of vector quantizers to time-varying channels’, Elsevier Signal Process., 2003, 83, pp. 15191528 (doi: 10.1016/S0165-1684(03)00071-9).
    7. 7)
      • 24. Natarajan, B., Konstantinides, K., Herley, C.: ‘Occam filters for stochastic sources with application to digital images’, IEEE Trans. Signal Process., 1998, 46, pp. 14341438 (doi: 10.1109/78.668806).
    8. 8)
      • 3. Zeger, K., Gersho, A.: ‘Vector quantizer design for memoryless noisy channels’. Proc. IEEE ICC, 1988, pp. 15931597.
    9. 9)
      • 18. Murthy, C.R., Duni, E.R., Rao, B.D.: ‘High-rate vector quantization for noisy channels with applications to wideband speech spectrum compression’, IEEE Trans. Signal Process., 2011, 59, pp. 53905403 (doi: 10.1109/TSP.2011.2164400).
    10. 10)
      • 21. Ganesan, T., Murthy, C.R.: ‘Receiver only optimized semi-hard decision VQ for noisy channels’. Proc. IEEE Globecom, 2009, pp. 16.
    11. 11)
      • 20. Lloyd, S.P.: ‘Least squares quantization in PCM’, IEEE Trans. Inf. Theory, 1982, IT-28, pp. 129137 (doi: 10.1109/TIT.1982.1056489).
    12. 12)
      • 6. Ben-David, G., Malah, D.: ‘Simple adaptation of vector-quantizers to combat channel errors’. IEEE DSP Workshop, 1994, pp. 4144.
    13. 13)
      • 10. Bozantzis, V., Ali, F.: ‘Combined source adaptive and channel optimised vector quantization algorithm’, Electron. Lett., 1999, 35, pp. 14551456 (doi: 10.1049/el:19991031).
    14. 14)
      • 14. Cuperman, V., Liu, F.H., Ho, P.: ‘Soft decision vector quantization for noisy channels’. Proc. IEEE Workshop on Speech Coding for Telecommunications, 1993, pp. 99100.
    15. 15)
      • 12. Li, J., Chaddha, N., Gray, R.M.: ‘Asymptotic performance of vector quantizers with a perceptual distortion measure’, IEEE Trans. Inf. Theory, 1999, 45, pp. 10821091 (doi: 10.1109/18.761252).
    16. 16)
      • 4. Farvardin, N.: ‘A study of vector quantization for noisy channels’, IEEE Trans. Inf. Theory, 1990, 36, pp. 799809 (doi: 10.1109/18.53739).
    17. 17)
      • 13. Farvardin, N., Vaishampayan, V.: ‘On the performance and complexity of channel-optimized vector quantizers’, IEEE Trans. Inf. Theory, 1991, 37, pp. 155160. (doi: 10.1109/18.61130).
    18. 18)
      • 5. Kumazawa, H., Kasahara, M., Namekawa, T.: ‘A construction of vector quantizers for noisy channels’, Electron. Eng. Jpn, 1984, 67-B, pp. 3947.
    19. 19)
      • 15. Skoglund, M., Hedelin, P.: ‘Hadamard-based soft decoding for vector quantization over noisy channels’, IEEE Trans. Inf. Theory, 1999, 45, pp. 515532 (doi: 10.1109/18.749000).
    20. 20)
      • 16. Murthy, C.R., Rao, B.D.: ‘High rate analysis of source coding for symmetric error channels’. Proc. Data Compression Conf. (DCC), 2006, pp. 163172.
    21. 21)
      • 1. Bennett, W.R.: ‘Spectra of quantized signals’, Bell Syst. Tech. J., 1948, 27, pp. 446472.
    22. 22)
      • 22. Sorensen, H.W.: ‘Parameter estimation: principles and problems’ (Mercel Dekker Inc., 1980).
    23. 23)
      • 25. Na, S., Neuhoff, D.L.: ‘Bennett's integral for vector quantizers’, IEEE Trans. Inf. Theory, 1995, 41, pp. 886900 (doi: 10.1109/18.391237).
    24. 24)
      • 23. Proakis, J.G.: ‘Digital communications’ (McGraw Hill Inc., 1995, 3rd edn.).
    25. 25)
      • 11. Gardner, W.R., Rao, B.D.: ‘Theoretical analysis of the high rate vector quantizer of LPC parameters’, IEEE Trans. Speech Audio Process., 1995, 3, pp. 367381 (doi: 10.1109/89.466658).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2013.0041
Loading

Related content

content/journals/10.1049/iet-spr.2013.0041
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading