Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Aliasing-free micro-Doppler analysis based on short-time compressed sensing

Time–frequency distribution (TFD) has been widely used for micro-Doppler analysis in radar signal processing. However, the spectrogram will suffer from aliasing if the maximum Doppler frequency exceeds half of the pulse repetition frequency, which may lead to false estimation of the targets' kinematic properties. In this study, by transmitting a series of random pulse repetition interval (RPRI) pulses, a concise TFD approach named short-time compressed sensing (STCS) is proposed for aliasing-free micro-Doppler analysis. In STCS, precise analysis and synthesis of the random sampling time series can be achieved by exploiting the signal's sparsity in the frequency domain. Furthermore, adaptive to the data, the widths of the particular rectangle windows are determined by sequential processing with a proper optimisation rule. To speed up the STCS procedure, the smoothed L0 algorithm is chosen for sparse recovery, where the pseudoinverse of the dictionaries can be calculated iteratively. The simulation results indicate that the proposed STCS approach can achieve both preferable TFD and acceptable computational cost. The effectiveness of the STCS is finally verified by the application for micro-Doppler estimating in RPRI radar.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 9. Kwok, H.K., Jones, D.L.: ‘Improved instantaneous frequency estimation using an adaptive short-time Fourier transform’, IEEE Trans. Signal Process., 2000, 48, (10), pp. 29642972 (doi: 10.1109/78.869059).
    31. 31)
      • 23. Donoho, D.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 12891306 (doi: 10.1109/TIT.2006.871582).
    32. 32)
      • 7. Jones, D.L., Baraniuk, R.G.: ‘A simple scheme for adapting time–frequency representations’, IEEE Trans. Signal Process., 1994, 42, (12), pp. 35303535 (doi: 10.1109/78.340790).
    33. 33)
      • 37. Soendergaard, P., Torresani, B., Balazs, P., Feichtinger, H.G.: ‘Linear time-frequency analysis toolbox’, available at: http://www.univie.ac.at/nuhag-php/ltfat, 2011.
    34. 34)
      • 15. Stoica, P., Babu, P., Li, J.: ‘New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data’, IEEE Trans. Signal Process., 2011, 59, (1), pp. 3547 (doi: 10.1109/TSP.2010.2086452).
    35. 35)
      • 2. Chen, V.C., Ling, H.: ‘Time–frequency transforms for radar imaging and signal analysis’ (Artech House, Boston·London, 2002).
    36. 36)
      • 11. Stankovic, L.J.: ‘A multitime definition of the Wigner higher order distribution: L-Wigner distribution’, IEEE Signal Process. Lett., 1994, 1, (7), pp. 106109 (doi: 10.1109/97.311805).
    37. 37)
      • 18. Quinquis, A., Radoi, E., Totir, F.C.: ‘Some radar imagery results using super resolution techniques’, IEEE Trans. Antennas Propag., 2004, 52, (5), pp. 12301244 (doi: 10.1109/TAP.2004.827541).
    38. 38)
      • 5. Chen, V.C.: ‘The micro-Doppler effect in radar’ (Artech House, Boston, London, 2011).
    39. 39)
      • 33. Liu, Z., Wei, X.Z., Li, X.: ‘Adaptive clutter suppression for airborne random pulse repetition interval radar based on compressed sensing’, Prog. Electromagn. Res., 2012, 128, pp. 291311.
    40. 40)
      • 8. Jones, D.L., Baraniuk, R.G.: ‘An adaptive optimal-kernel time–frequency representation’, IEEE Trans. Signal Process., 1995, 43, (10), pp. 23612371 (doi: 10.1109/78.469854).
    41. 41)
      • 22. Candès, E., Tao, T.: ‘Near optimal signal recovery from random projections: universal encoding strategies?’, IEEE Trans. Inf. Theory, 2006, 52, (12), pp. 54065425 (doi: 10.1109/TIT.2006.885507).
    42. 42)
      • 19. Stoica, P., Sandgren, N.: ‘Spectral analysis of irregularly-sampled data: paralleling the regularly-sampled data approaches’, Digital Signal Process., 2006, 16, (6), pp. 712734 (doi: 10.1016/j.dsp.2006.08.012).
    43. 43)
      • 36. Horn, R.A., Johnson, C.R.: ‘Matrix analysis’ (Cambridge University Press, Cambridge, UK, 1985).
    44. 44)
      • 10. Boashash, B., Shea, P.O.: ‘Polynomial Wigner–Ville distributions and their relationship to time-varying higher order spectra’, IEEE Trans. Signal Process., 1994, 42, (1), pp. 216220 (doi: 10.1109/78.258143).
    45. 45)
      • 1. Chen, V.C., Ling, H.: ‘Joint time–frequency analysis for radar signal and image processing’, IEEE Signal Process. Mag., 1999, 2, (16), pp. 8193 (doi: 10.1109/79.752053).
    46. 46)
      • 29. Babaie-Zadeh, M., Jutten, C.: ‘On the stable recovery of the sparsest overcomplete representations in presence of noise’, IEEE Trans. Signal Process., 2010, 58, (10), pp. 53965400 (doi: 10.1109/TSP.2010.2052357).
    47. 47)
      • 31. Chen, V.C., Li, F., Ho, S.S., Wrchsler, H.: ‘Analysis of micro-Doppler signatures’, IET Radar Sonar Navig., 2003, 150, (4), pp. 271276 (doi: 10.1049/ip-rsn:20030743).
    48. 48)
      • 30. Chen, V.C., Li, F.Y., Ho, S.S., Wechsler, H.: ‘Micro-Doppler effect in radar: phenomenon, model, and simulation study’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (1), pp. 221 (doi: 10.1109/TAES.2006.1603402).
    49. 49)
      • 32. Thayaparan, T., Stankovic, L.J., Dakovic, M., Popovic, V.: ‘Micro-Doppler parameter estimation from a fraction of the period’, IET Signal Process., 2010, 4, (3), pp. 201212 (doi: 10.1049/iet-spr.2009.0093).
    50. 50)
      • 25. Patel, V.M., Easley, G.R., Healy, D.M.Jr, Chellappa, R.: ‘Compressed synthetic aperture radar’, IEEE J. Sel. Top. Signal Process., 2010, 4, (2), pp. 244254 (doi: 10.1109/JSTSP.2009.2039181).
    51. 51)
      • 28. Mohimani, H., Babaie-Zadeh, M., Jutten, C.: ‘A fast approach for overcomplete sparse decomposition based on smoothed l0 norm’, IEEE Trans. Signal Process., 2009, 57, (1), pp. 289301 (doi: 10.1109/TSP.2008.2007606).
    52. 52)
      • 35. Candès, E., Romberg, J., Tao, T.: ‘Stable signal recovery from incomplete and inaccurate measurements’, Commun. Pure Appl. Math., 2006, 59, (8), pp. 12071223 (doi: 10.1002/cpa.20124).
    53. 53)
      • 6. Jones, D.L., Parks, T.W.: ‘A high resolution data-adaptive time–frequency representation’, IEEE Trans. Acoustics Speech Signal Process., 1990, 38, (12), pp. 21272135 (doi: 10.1109/29.61539).
    54. 54)
      • 21. Candès, E., Romberg, J., Tao, T.: ‘Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information’, IEEE Trans. Inf. Theory, 2006, 52, (2), pp. 489509 (doi: 10.1109/TIT.2005.862083).
    55. 55)
      • 24. Benjamin, R.: ‘Form of Doppler processing for radars of random p.r.i. and r.f.’, Electron. Lett., 1979, 15, (24), pp. 782 (doi: 10.1049/el:19790556).
    56. 56)
      • 13. Balakrishnan, A.V.: ‘On the problem of time jitter in sampling’, IRE Trans. Inf. Theory, 1962, 8, (3), pp. 226236 (doi: 10.1109/TIT.1962.1057717).
    57. 57)
      • 16. Schmidt, R.O.: ‘Multiple emitter location and signal parameter estimation’, IEEE Trans. Antennas Propag., 1986, AP-34, pp. 276280 (doi: 10.1109/TAP.1986.1143830).
    58. 58)
      • 34. Mallat, S.: ‘A wavelet tour of signal processing – the sparse way’ (Academic Press, 2009).
    59. 59)
      • 17. Roy, R., Kailath, T.: ‘ESPRIT-estimation of signal parameters via rotational invariance techniques’, IEEE Trans. Acoustics Speech Signal Process., 1989, 37, (3), pp. 984995 (doi: 10.1109/29.32276).
    60. 60)
      • 20. Bourguignon, S., Carfantan, H., Idier, J.: ‘A sparsity-based method for the estimation of spectral lines from irregularly sampled data’, IEEE J. Sel. Top. Signal Process., 2007, 1, (4), pp. 575585 (doi: 10.1109/JSTSP.2007.910275).
    61. 61)
      • 14. Beutler, F.J.: ‘Alias-free randomly timed sampling of stochastic processes’, IEEE Trans. Inf. Theory, 1970, IT-16, (2), pp. 147152 (doi: 10.1109/TIT.1970.1054435).
    62. 62)
      • 27. Liu, Z., Wei, X.Z., Li, X.: ‘Aliasing-free moving target detection in random pulse repetition interval radar based on compressed sensing’, IEEE Sens. J., 2013, 13, (7), pp. 25232534 (doi: 10.1109/JSEN.2013.2249762).
    63. 63)
      • 3. Lui, H.S., Shuley, N.V.Z.: ‘Evolutions of partial and global resonances in transient electromagnetic scattering’, IEEE Antennas Wirel. Propag. Lett., 2008, 7, pp. 435439.
    64. 64)
      • 26. Quan, Y.H., Zhang, L., Guo, R., et al: ‘Generating dense and super-resolution ISAR image by combining bandwidth extrapolation and compressive sensing’, Sci. China Inf. Sci., 2011, 54, (10), pp. 21582169 (doi: 10.1007/s11432-011-4298-4).
    65. 65)
      • 4. Lui, H.S., Persson, M., Shuley, N.V.Z.: ‘Joint time–frequency analysis of transient electromagnetic scattering from a subsurface target’, IEEE Antennas Propag. Mag., 2012, 5, (54), pp. 109130.
    66. 66)
      • 12. Neill, J.C.O., Flandrin, P.: ‘Virtues and vices of quartic time–frequency distributions’, IEEE Trans. Signal Process., 2000, 48, (9), pp. 26412650 (doi: 10.1109/78.863070).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2012.0403
Loading

Related content

content/journals/10.1049/iet-spr.2012.0403
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address