http://iet.metastore.ingenta.com
1887

Aliasing-free micro-Doppler analysis based on short-time compressed sensing

Aliasing-free micro-Doppler analysis based on short-time compressed sensing

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Time–frequency distribution (TFD) has been widely used for micro-Doppler analysis in radar signal processing. However, the spectrogram will suffer from aliasing if the maximum Doppler frequency exceeds half of the pulse repetition frequency, which may lead to false estimation of the targets' kinematic properties. In this study, by transmitting a series of random pulse repetition interval (RPRI) pulses, a concise TFD approach named short-time compressed sensing (STCS) is proposed for aliasing-free micro-Doppler analysis. In STCS, precise analysis and synthesis of the random sampling time series can be achieved by exploiting the signal's sparsity in the frequency domain. Furthermore, adaptive to the data, the widths of the particular rectangle windows are determined by sequential processing with a proper optimisation rule. To speed up the STCS procedure, the smoothed L0 algorithm is chosen for sparse recovery, where the pseudoinverse of the dictionaries can be calculated iteratively. The simulation results indicate that the proposed STCS approach can achieve both preferable TFD and acceptable computational cost. The effectiveness of the STCS is finally verified by the application for micro-Doppler estimating in RPRI radar.

References

    1. 1)
      • 1. Chen, V.C., Ling, H.: ‘Joint time–frequency analysis for radar signal and image processing’, IEEE Signal Process. Mag., 1999, 2, (16), pp. 8193 (doi: 10.1109/79.752053).
    2. 2)
      • 2. Chen, V.C., Ling, H.: ‘Time–frequency transforms for radar imaging and signal analysis’ (Artech House, Boston·London, 2002).
    3. 3)
      • 3. Lui, H.S., Shuley, N.V.Z.: ‘Evolutions of partial and global resonances in transient electromagnetic scattering’, IEEE Antennas Wirel. Propag. Lett., 2008, 7, pp. 435439.
    4. 4)
      • 4. Lui, H.S., Persson, M., Shuley, N.V.Z.: ‘Joint time–frequency analysis of transient electromagnetic scattering from a subsurface target’, IEEE Antennas Propag. Mag., 2012, 5, (54), pp. 109130.
    5. 5)
      • 5. Chen, V.C.: ‘The micro-Doppler effect in radar’ (Artech House, Boston, London, 2011).
    6. 6)
      • 6. Jones, D.L., Parks, T.W.: ‘A high resolution data-adaptive time–frequency representation’, IEEE Trans. Acoustics Speech Signal Process., 1990, 38, (12), pp. 21272135 (doi: 10.1109/29.61539).
    7. 7)
      • 7. Jones, D.L., Baraniuk, R.G.: ‘A simple scheme for adapting time–frequency representations’, IEEE Trans. Signal Process., 1994, 42, (12), pp. 35303535 (doi: 10.1109/78.340790).
    8. 8)
      • 8. Jones, D.L., Baraniuk, R.G.: ‘An adaptive optimal-kernel time–frequency representation’, IEEE Trans. Signal Process., 1995, 43, (10), pp. 23612371 (doi: 10.1109/78.469854).
    9. 9)
      • 9. Kwok, H.K., Jones, D.L.: ‘Improved instantaneous frequency estimation using an adaptive short-time Fourier transform’, IEEE Trans. Signal Process., 2000, 48, (10), pp. 29642972 (doi: 10.1109/78.869059).
    10. 10)
      • 10. Boashash, B., Shea, P.O.: ‘Polynomial Wigner–Ville distributions and their relationship to time-varying higher order spectra’, IEEE Trans. Signal Process., 1994, 42, (1), pp. 216220 (doi: 10.1109/78.258143).
    11. 11)
      • 11. Stankovic, L.J.: ‘A multitime definition of the Wigner higher order distribution: L-Wigner distribution’, IEEE Signal Process. Lett., 1994, 1, (7), pp. 106109 (doi: 10.1109/97.311805).
    12. 12)
      • 12. Neill, J.C.O., Flandrin, P.: ‘Virtues and vices of quartic time–frequency distributions’, IEEE Trans. Signal Process., 2000, 48, (9), pp. 26412650 (doi: 10.1109/78.863070).
    13. 13)
      • 13. Balakrishnan, A.V.: ‘On the problem of time jitter in sampling’, IRE Trans. Inf. Theory, 1962, 8, (3), pp. 226236 (doi: 10.1109/TIT.1962.1057717).
    14. 14)
      • 14. Beutler, F.J.: ‘Alias-free randomly timed sampling of stochastic processes’, IEEE Trans. Inf. Theory, 1970, IT-16, (2), pp. 147152 (doi: 10.1109/TIT.1970.1054435).
    15. 15)
      • 15. Stoica, P., Babu, P., Li, J.: ‘New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data’, IEEE Trans. Signal Process., 2011, 59, (1), pp. 3547 (doi: 10.1109/TSP.2010.2086452).
    16. 16)
      • 16. Schmidt, R.O.: ‘Multiple emitter location and signal parameter estimation’, IEEE Trans. Antennas Propag., 1986, AP-34, pp. 276280 (doi: 10.1109/TAP.1986.1143830).
    17. 17)
      • 17. Roy, R., Kailath, T.: ‘ESPRIT-estimation of signal parameters via rotational invariance techniques’, IEEE Trans. Acoustics Speech Signal Process., 1989, 37, (3), pp. 984995 (doi: 10.1109/29.32276).
    18. 18)
      • 18. Quinquis, A., Radoi, E., Totir, F.C.: ‘Some radar imagery results using super resolution techniques’, IEEE Trans. Antennas Propag., 2004, 52, (5), pp. 12301244 (doi: 10.1109/TAP.2004.827541).
    19. 19)
      • 19. Stoica, P., Sandgren, N.: ‘Spectral analysis of irregularly-sampled data: paralleling the regularly-sampled data approaches’, Digital Signal Process., 2006, 16, (6), pp. 712734 (doi: 10.1016/j.dsp.2006.08.012).
    20. 20)
      • 20. Bourguignon, S., Carfantan, H., Idier, J.: ‘A sparsity-based method for the estimation of spectral lines from irregularly sampled data’, IEEE J. Sel. Top. Signal Process., 2007, 1, (4), pp. 575585 (doi: 10.1109/JSTSP.2007.910275).
    21. 21)
      • 21. Candès, E., Romberg, J., Tao, T.: ‘Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information’, IEEE Trans. Inf. Theory, 2006, 52, (2), pp. 489509 (doi: 10.1109/TIT.2005.862083).
    22. 22)
      • 22. Candès, E., Tao, T.: ‘Near optimal signal recovery from random projections: universal encoding strategies?’, IEEE Trans. Inf. Theory, 2006, 52, (12), pp. 54065425 (doi: 10.1109/TIT.2006.885507).
    23. 23)
      • 23. Donoho, D.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 12891306 (doi: 10.1109/TIT.2006.871582).
    24. 24)
      • 24. Benjamin, R.: ‘Form of Doppler processing for radars of random p.r.i. and r.f.’, Electron. Lett., 1979, 15, (24), pp. 782 (doi: 10.1049/el:19790556).
    25. 25)
      • 25. Patel, V.M., Easley, G.R., Healy, D.M.Jr, Chellappa, R.: ‘Compressed synthetic aperture radar’, IEEE J. Sel. Top. Signal Process., 2010, 4, (2), pp. 244254 (doi: 10.1109/JSTSP.2009.2039181).
    26. 26)
      • 26. Quan, Y.H., Zhang, L., Guo, R., et al: ‘Generating dense and super-resolution ISAR image by combining bandwidth extrapolation and compressive sensing’, Sci. China Inf. Sci., 2011, 54, (10), pp. 21582169 (doi: 10.1007/s11432-011-4298-4).
    27. 27)
      • 27. Liu, Z., Wei, X.Z., Li, X.: ‘Aliasing-free moving target detection in random pulse repetition interval radar based on compressed sensing’, IEEE Sens. J., 2013, 13, (7), pp. 25232534 (doi: 10.1109/JSEN.2013.2249762).
    28. 28)
      • 28. Mohimani, H., Babaie-Zadeh, M., Jutten, C.: ‘A fast approach for overcomplete sparse decomposition based on smoothed l0 norm’, IEEE Trans. Signal Process., 2009, 57, (1), pp. 289301 (doi: 10.1109/TSP.2008.2007606).
    29. 29)
      • 29. Babaie-Zadeh, M., Jutten, C.: ‘On the stable recovery of the sparsest overcomplete representations in presence of noise’, IEEE Trans. Signal Process., 2010, 58, (10), pp. 53965400 (doi: 10.1109/TSP.2010.2052357).
    30. 30)
      • 30. Chen, V.C., Li, F.Y., Ho, S.S., Wechsler, H.: ‘Micro-Doppler effect in radar: phenomenon, model, and simulation study’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (1), pp. 221 (doi: 10.1109/TAES.2006.1603402).
    31. 31)
      • 31. Chen, V.C., Li, F., Ho, S.S., Wrchsler, H.: ‘Analysis of micro-Doppler signatures’, IET Radar Sonar Navig., 2003, 150, (4), pp. 271276 (doi: 10.1049/ip-rsn:20030743).
    32. 32)
      • 32. Thayaparan, T., Stankovic, L.J., Dakovic, M., Popovic, V.: ‘Micro-Doppler parameter estimation from a fraction of the period’, IET Signal Process., 2010, 4, (3), pp. 201212 (doi: 10.1049/iet-spr.2009.0093).
    33. 33)
      • 33. Liu, Z., Wei, X.Z., Li, X.: ‘Adaptive clutter suppression for airborne random pulse repetition interval radar based on compressed sensing’, Prog. Electromagn. Res., 2012, 128, pp. 291311.
    34. 34)
      • 34. Mallat, S.: ‘A wavelet tour of signal processing – the sparse way’ (Academic Press, 2009).
    35. 35)
      • 35. Candès, E., Romberg, J., Tao, T.: ‘Stable signal recovery from incomplete and inaccurate measurements’, Commun. Pure Appl. Math., 2006, 59, (8), pp. 12071223 (doi: 10.1002/cpa.20124).
    36. 36)
      • 36. Horn, R.A., Johnson, C.R.: ‘Matrix analysis’ (Cambridge University Press, Cambridge, UK, 1985).
    37. 37)
      • 37. Soendergaard, P., Torresani, B., Balazs, P., Feichtinger, H.G.: ‘Linear time-frequency analysis toolbox’, available at: http://www.univie.ac.at/nuhag-php/ltfat, 2011.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2012.0403
Loading

Related content

content/journals/10.1049/iet-spr.2012.0403
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address