access icon free Distributed consensus-based Kalman filtering in sensor networks with quantised communications and random sensor failures

This study investigates the signal estimation problem in noisy sensor networks with quantised communications. The sensors are subject to random sensor failures, and synchronously take noisy measurements to produce local estimates by using a Kalman filtering scheme at each sampling instant. A quantiser is considered to be embedded in each sensor, and the probabilistic quantisation strategy is adopted to reduce the energy consumption. In between two sampling instants, each sensor collects quantised local estimates from its neighbours and runs a consensus-based fusion algorithm to generate a fused estimate. The process noises and measurement noises are considered to be spatially uncorrelated, a recursive equation is presented to calculate the estimation error covariance matrix and an upper bound is derived for the estimation performance index. Moreover, a sufficient condition for the convergence of the upper bound of the estimation performance index is also presented. Two types of optimisation problems are constructed for cases of infinite and finite recursions, respectively, where the former one focuses on minimising the derived upper bound of the estimation performance index, and the latter one aims to minimise the energy consumption subject to a constraint on the estimation performance. Illustrative examples are provided to demonstrate the effectiveness of the proposed theoretical results.

Inspec keywords: Kalman filters; covariance matrices; wireless sensor networks

Other keywords: quantised communications; random sensor failures; consensus-based fusion algorithm; distributed consensus-based Kalman filtering; infinite recursions; noisy sensor networks; quantiser; Kalman filtering scheme; probabilistic quantisation; signal estimation problem; energy consumption subject; synchronously take noisy measurements; estimation error covariance matrix

Subjects: Filtering methods in signal processing; Algebra; Wireless sensor networks

References

    1. 1)
    2. 2)
    3. 3)
      • 40. Heinzelman, W.B.: ‘Application-specific protocol architectures for wireless networks’. PhD thesis, Massachusetts Institute of Technology, 2000.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • 35. Sayed, A.H., Lopes, C.G.: ‘Adaptive processing over distributed networks’, IEICE Trans. Fundam. Electron., Commun. Comput. Sci., 2007, E90-A, (8), pp. 15041510 (doi: 10.1093/ietfec/e90-a.8.1504).
    36. 36)
      • 30. Olfati-Saber, R.: ‘Distributed Kalman filtering for sensor networks’. Proc. 46th IEEE Conf. Decision and Control, New Orleans, LA, December 2007, pp. 54925498.
    37. 37)
      • 11. Li, L., AlRegib, G.: ‘Distributed estimation in energy-constrained wireless sensor network’, IEEE Trans. Signal Process., 2009, 57, (10), pp. 37463758 (doi: 10.1109/TSP.2009.2022874).
    38. 38)
      • 1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: ‘A survey on sensor networks’, IEEE Commun. Mag., 2002, 40, (8), pp. 102114 (doi: 10.1109/MCOM.2002.1024422).
    39. 39)
      • 3. Jadbabaie, A., Lin, J., Morse, A.: ‘Coordination of groups of mobile autonomous agents using nearest neighbor rules’, IEEE Trans. Autom. Control, 2003, 48, (6), pp. 9881001 (doi: 10.1109/TAC.2003.812781).
    40. 40)
      • 31. Stanković, S.S., Stanković, M.S., Stipanović, D.M.: ‘Consensus based overlapping decentralized estimation with missing observations and communication faults’, Automatica, 2009, 45, (6), pp. 13971406 (doi: 10.1016/j.automatica.2009.02.014).
    41. 41)
      • 21. Hounkpevi, F.O., Yaz, E.E.: ‘Robust minimum variance linear state estimators for multiple sensors with different failure rates’, Automatica, 2007, 43, (7), pp. 12741280 (doi: 10.1016/j.automatica.2006.12.025).
    42. 42)
      • 6. Ren, W., Beard, R.: ‘Consensus seeking in multi-agent systems using dynamically changing interaction topologies’, IEEE Trans. Autom. Control, 2005, 50, (5), pp. 655661 (doi: 10.1109/TAC.2005.846556).
    43. 43)
      • 13. Ribeiro, A., Giannakis, G.B., Roumeliotis, S.: ‘SOI-KF: distributed Kalman filtering with low-cost communications using the sign of innovations’, IEEE Trans. Signal Process., 2006, 34, (12), pp. 47824795 (doi: 10.1109/TSP.2006.882059).
    44. 44)
      • 40. Heinzelman, W.B.: ‘Application-specific protocol architectures for wireless networks’. PhD thesis, Massachusetts Institute of Technology, 2000.
    45. 45)
      • 24. Wang, Z., Yang, F., Ho, D.W.C., Liu, X.: ‘Robust finite-horizon filtering for stochastic systems with missing measurements’, IEEE Signal Process. Lett., 2005, 12, (6), pp. 437440 (doi: 10.1109/LSP.2005.847890).
    46. 46)
      • 32. Xiao, J.J., Luo, Z.Q.: ‘Decentralized estimation in an inhomogeneous sensing environment’, IEEE Trans. Inf. Theory, 2005, 51, (10), pp. 35643575 (doi: 10.1109/TIT.2005.855580).
    47. 47)
      • 34. Boyd, S., Diaconis, P., Xiao, L.: ‘Fastest mixing markov chain on a graph’, SIAM Rev., 2004, 46, (4), pp. 667689 (doi: 10.1137/S0036144503423264).
    48. 48)
      • 27. Alriksson, P., Rantzer, A.: ‘Distributed Kalman filtering using weighted averaging’. Proc. 17th Int. Symp. Mathematical Theory of Networks and Systems, Kyoto, Japan, July 2006.
    49. 49)
      • 12. Lopes, C.G., Sayed, A.H.: ‘Diffusion least-mean squares over adaptive networks: Formulation and performance analysis’, IEEE Trans. Signal Process., 2008, 56, (7), pp. 31223136 (doi: 10.1109/TSP.2008.917383).
    50. 50)
      • 26. Song, E., Zhu, Y., Zhou, J., You, Z.: ‘Optimal Kalman filtering fusion with cross-correlated sensor noises’, Automatica, 2007, 43, (8), pp. 14501456 (doi: 10.1016/j.automatica.2007.01.010).
    51. 51)
      • 39. Coope, I.D.: ‘On matrix trace inequalities and related topics for products of Hermitian matrix’, J. Math. Anal. Appl., 1994, 188, (3), pp. 9991001 (doi: 10.1006/jmaa.1994.1475).
    52. 52)
      • 9. Yeow, W., Tham, C., Wong, W.: ‘Energy efficient multiple target tracking in wireless sensor networks’, IEEE Trans. Veh. Technol., 2007, 56, (2), pp. 918928 (doi: 10.1109/TVT.2007.891480).
    53. 53)
      • 20. Dong, H., Wang, Z., Ho, D.W.C., Gao, H.: ‘Variance-constrained H filtering for a class of nonlinear time-varying systems with multiple missing measurements: the finite-horizon case’, IEEE Trans. Signal Process., 2010, 58, (5), pp. 25342543 (doi: 10.1109/TSP.2010.2042489).
    54. 54)
      • 16. Deng, Z., Xu, Y.: ‘Descriptor wiener state estimators’, Automatica, 2000, 36, (11), pp. 17611766 (doi: 10.1016/S0005-1098(00)00079-0).
    55. 55)
      • 19. Sun, S., Deng, Z.: ‘Multi-sensor optimal information fusion kalman filter’, Automatica, 2004, 40, (6), pp. 10171023 (doi: 10.1016/j.automatica.2004.01.014).
    56. 56)
      • 18. Shi, L., Xie, L., Murray, R.: ‘Kalman filtering over a packet-delaying network: A probabilistic approach’, Automatica, 2009, 45, (9), pp. 21342140 (doi: 10.1016/j.automatica.2009.05.018).
    57. 57)
      • 10. Carli, R., Chiuso, A., Schenato, L., Zampieri, S.: ‘Distributed Kalman filtering based on consensus strategies’, IEEE J. Sel. Areas Commun., 2008, 26, (4), pp. 622632 (doi: 10.1109/JSAC.2008.080505).
    58. 58)
      • 33. Kailath, T., Sayed, A.H., Hassibi, B.: ‘Linear estimation’ (Prentice-Hall, 2000).
    59. 59)
      • 2. Fax, A., Murray, R.: ‘Information flow and cooperative control of vehicle formations’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 14651476 (doi: 10.1109/TAC.2004.834433).
    60. 60)
      • 17. Nagpal, K.M., Khargoneckar, P.P.: ‘Filtering and smoothing in an H setting’, IEEE Trans. Autom. Control, 1991, 36, (2), pp. 152166 (doi: 10.1109/9.67291).
    61. 61)
      • 23. Wang, Z., Ho, D.W.C., Liu, X.: ‘Variance-constrained filtering for uncertain stochastic systems with missing measurements’, IEEE Trans. Autom. Control, 2003, 48, (7), pp. 12541258 (doi: 10.1109/TAC.2003.814272).
    62. 62)
      • 22. Sun, S., Xie, L., Xiao, W., Xiao, N.: ‘Optimal filtering for systems with multiple packet dropouts’, IEEE Trans. Circuits Syst. Express Briefs, 2008, 55, (7), pp. 695699 (doi: 10.1109/TCSII.2008.921576).
    63. 63)
      • 4. Li, D., Wong, K.D., Hu, Y.H., Sayeed, A.M.: ‘Detection, classification, and tracking of targets’, IEEE Signal Process. Mag., 2002, 19, (2), pp. 1729 (doi: 10.1109/79.985674).
    64. 64)
      • 5. Olfati-Saber, R., Fax, J.A., Murray, R.: ‘Consensus and cooperation in networked multi-agent systems’, Proc. IEEE, 2007, 95, (1), pp. 215233 (doi: 10.1109/JPROC.2006.887293).
    65. 65)
      • 38. Sun, S., Lin, J., Xie, L., Xiao, W.: ‘Quantized Kalman Filtering’. in Intelligent Control, 2007. ISIC 2007. IEEE 22nd Int. Symp., 2007, pp. 712.
    66. 66)
      • 36. Xiao, J.J., Cui, S.G., Luo, Z.Q., Goldsmith, A.J.: ‘Power scheduling of universal decentralized estimation in sensor networks’, IEEE Trans. Signal Process., 2006, 54, (2), pp. 413422 (doi: 10.1109/TSP.2005.861898).
    67. 67)
      • 29. Olfati-Saber, R., Shamma, J.S.: ‘Consensus filters for sensor networks and distributed sensor fusion’. Proc. 44th IEEE conf. decision and control, and the European Control Conf.Seville, Spain, December 2005, pp. 66986703.
    68. 68)
      • 25. Cattivelli, F.S., Sayed, A.H.: ‘Diffusion strategies for distributed Kalman filtering and smoothing’, IEEE Trans. Autom. Control, 2010, 55, (9), pp. 20692084 (doi: 10.1109/TAC.2010.2042987).
    69. 69)
      • 7. Semertzidis, T., Dimitropoulos, K., Koutsia, A., Grammalidis, N.: ‘Video sensor network for real-time traffic monitoring and surveillance’, IET Intell. Transp. Syst., 2010, 4, (2), pp. 103112 (doi: 10.1049/iet-its.2008.0092).
    70. 70)
      • 8. Susca, S., Bullo, F., Martinez, S.: ‘Monitoring environmental boundaries with a robotic sensor network’, IEEE Trans. Control Syst. Technol., 2008, 16, (2), pp. 288296 (doi: 10.1109/TCST.2007.903395).
    71. 71)
      • 28. Olfati-Saber, R.: ‘Distributed Kalman filter with embedded consensus filters’. Proc. 44th IEEE Conf. Decision and Control, and European Control Conf., December 2005, pp. 81798184.
    72. 72)
      • 14. Schizas, I.D., Giannakis, G.B., Luo, Z.Q.: ‘Distributed estimation using reduced-dimensionality sensor observations’, IEEE Trans. Signal Process., 2007, 55, (8), pp. 42844299 (doi: 10.1109/TSP.2007.895987).
    73. 73)
      • 37. Fang, J., Li, H.: ‘Distributed consensus with quantized data via sequence averaging’, IEEE Trans. Signal Process., 2010, 58, (2), pp. 944948 (doi: 10.1109/TSP.2009.2032951).
    74. 74)
      • 15. Shen, B., Wang, Z., Hung, Y.S.: ‘Distributed consensus filtering in sensor networks with multiple missing measurement: The finite-horizon case’, Automatica, 2010, 46, (10), pp. 16821688 (doi: 10.1016/j.automatica.2010.06.025).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2012.0274
Loading

Related content

content/journals/10.1049/iet-spr.2012.0274
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading