http://iet.metastore.ingenta.com
1887

Distributed consensus-based Kalman filtering in sensor networks with quantised communications and random sensor failures

Distributed consensus-based Kalman filtering in sensor networks with quantised communications and random sensor failures

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates the signal estimation problem in noisy sensor networks with quantised communications. The sensors are subject to random sensor failures, and synchronously take noisy measurements to produce local estimates by using a Kalman filtering scheme at each sampling instant. A quantiser is considered to be embedded in each sensor, and the probabilistic quantisation strategy is adopted to reduce the energy consumption. In between two sampling instants, each sensor collects quantised local estimates from its neighbours and runs a consensus-based fusion algorithm to generate a fused estimate. The process noises and measurement noises are considered to be spatially uncorrelated, a recursive equation is presented to calculate the estimation error covariance matrix and an upper bound is derived for the estimation performance index. Moreover, a sufficient condition for the convergence of the upper bound of the estimation performance index is also presented. Two types of optimisation problems are constructed for cases of infinite and finite recursions, respectively, where the former one focuses on minimising the derived upper bound of the estimation performance index, and the latter one aims to minimise the energy consumption subject to a constraint on the estimation performance. Illustrative examples are provided to demonstrate the effectiveness of the proposed theoretical results.

References

    1. 1)
      • 1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: ‘A survey on sensor networks’, IEEE Commun. Mag., 2002, 40, (8), pp. 102114 (doi: 10.1109/MCOM.2002.1024422).
    2. 2)
      • 2. Fax, A., Murray, R.: ‘Information flow and cooperative control of vehicle formations’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 14651476 (doi: 10.1109/TAC.2004.834433).
    3. 3)
      • 3. Jadbabaie, A., Lin, J., Morse, A.: ‘Coordination of groups of mobile autonomous agents using nearest neighbor rules’, IEEE Trans. Autom. Control, 2003, 48, (6), pp. 9881001 (doi: 10.1109/TAC.2003.812781).
    4. 4)
      • 4. Li, D., Wong, K.D., Hu, Y.H., Sayeed, A.M.: ‘Detection, classification, and tracking of targets’, IEEE Signal Process. Mag., 2002, 19, (2), pp. 1729 (doi: 10.1109/79.985674).
    5. 5)
      • 5. Olfati-Saber, R., Fax, J.A., Murray, R.: ‘Consensus and cooperation in networked multi-agent systems’, Proc. IEEE, 2007, 95, (1), pp. 215233 (doi: 10.1109/JPROC.2006.887293).
    6. 6)
      • 6. Ren, W., Beard, R.: ‘Consensus seeking in multi-agent systems using dynamically changing interaction topologies’, IEEE Trans. Autom. Control, 2005, 50, (5), pp. 655661 (doi: 10.1109/TAC.2005.846556).
    7. 7)
      • 7. Semertzidis, T., Dimitropoulos, K., Koutsia, A., Grammalidis, N.: ‘Video sensor network for real-time traffic monitoring and surveillance’, IET Intell. Transp. Syst., 2010, 4, (2), pp. 103112 (doi: 10.1049/iet-its.2008.0092).
    8. 8)
      • 8. Susca, S., Bullo, F., Martinez, S.: ‘Monitoring environmental boundaries with a robotic sensor network’, IEEE Trans. Control Syst. Technol., 2008, 16, (2), pp. 288296 (doi: 10.1109/TCST.2007.903395).
    9. 9)
      • 9. Yeow, W., Tham, C., Wong, W.: ‘Energy efficient multiple target tracking in wireless sensor networks’, IEEE Trans. Veh. Technol., 2007, 56, (2), pp. 918928 (doi: 10.1109/TVT.2007.891480).
    10. 10)
      • 10. Carli, R., Chiuso, A., Schenato, L., Zampieri, S.: ‘Distributed Kalman filtering based on consensus strategies’, IEEE J. Sel. Areas Commun., 2008, 26, (4), pp. 622632 (doi: 10.1109/JSAC.2008.080505).
    11. 11)
      • 11. Li, L., AlRegib, G.: ‘Distributed estimation in energy-constrained wireless sensor network’, IEEE Trans. Signal Process., 2009, 57, (10), pp. 37463758 (doi: 10.1109/TSP.2009.2022874).
    12. 12)
      • 12. Lopes, C.G., Sayed, A.H.: ‘Diffusion least-mean squares over adaptive networks: Formulation and performance analysis’, IEEE Trans. Signal Process., 2008, 56, (7), pp. 31223136 (doi: 10.1109/TSP.2008.917383).
    13. 13)
      • 13. Ribeiro, A., Giannakis, G.B., Roumeliotis, S.: ‘SOI-KF: distributed Kalman filtering with low-cost communications using the sign of innovations’, IEEE Trans. Signal Process., 2006, 34, (12), pp. 47824795 (doi: 10.1109/TSP.2006.882059).
    14. 14)
      • 14. Schizas, I.D., Giannakis, G.B., Luo, Z.Q.: ‘Distributed estimation using reduced-dimensionality sensor observations’, IEEE Trans. Signal Process., 2007, 55, (8), pp. 42844299 (doi: 10.1109/TSP.2007.895987).
    15. 15)
      • 15. Shen, B., Wang, Z., Hung, Y.S.: ‘Distributed consensus filtering in sensor networks with multiple missing measurement: The finite-horizon case’, Automatica, 2010, 46, (10), pp. 16821688 (doi: 10.1016/j.automatica.2010.06.025).
    16. 16)
      • 16. Deng, Z., Xu, Y.: ‘Descriptor wiener state estimators’, Automatica, 2000, 36, (11), pp. 17611766 (doi: 10.1016/S0005-1098(00)00079-0).
    17. 17)
      • 17. Nagpal, K.M., Khargoneckar, P.P.: ‘Filtering and smoothing in an H setting’, IEEE Trans. Autom. Control, 1991, 36, (2), pp. 152166 (doi: 10.1109/9.67291).
    18. 18)
      • 18. Shi, L., Xie, L., Murray, R.: ‘Kalman filtering over a packet-delaying network: A probabilistic approach’, Automatica, 2009, 45, (9), pp. 21342140 (doi: 10.1016/j.automatica.2009.05.018).
    19. 19)
      • 19. Sun, S., Deng, Z.: ‘Multi-sensor optimal information fusion kalman filter’, Automatica, 2004, 40, (6), pp. 10171023 (doi: 10.1016/j.automatica.2004.01.014).
    20. 20)
      • 20. Dong, H., Wang, Z., Ho, D.W.C., Gao, H.: ‘Variance-constrained H filtering for a class of nonlinear time-varying systems with multiple missing measurements: the finite-horizon case’, IEEE Trans. Signal Process., 2010, 58, (5), pp. 25342543 (doi: 10.1109/TSP.2010.2042489).
    21. 21)
      • 21. Hounkpevi, F.O., Yaz, E.E.: ‘Robust minimum variance linear state estimators for multiple sensors with different failure rates’, Automatica, 2007, 43, (7), pp. 12741280 (doi: 10.1016/j.automatica.2006.12.025).
    22. 22)
      • 22. Sun, S., Xie, L., Xiao, W., Xiao, N.: ‘Optimal filtering for systems with multiple packet dropouts’, IEEE Trans. Circuits Syst. Express Briefs, 2008, 55, (7), pp. 695699 (doi: 10.1109/TCSII.2008.921576).
    23. 23)
      • 23. Wang, Z., Ho, D.W.C., Liu, X.: ‘Variance-constrained filtering for uncertain stochastic systems with missing measurements’, IEEE Trans. Autom. Control, 2003, 48, (7), pp. 12541258 (doi: 10.1109/TAC.2003.814272).
    24. 24)
      • 24. Wang, Z., Yang, F., Ho, D.W.C., Liu, X.: ‘Robust finite-horizon filtering for stochastic systems with missing measurements’, IEEE Signal Process. Lett., 2005, 12, (6), pp. 437440 (doi: 10.1109/LSP.2005.847890).
    25. 25)
      • 25. Cattivelli, F.S., Sayed, A.H.: ‘Diffusion strategies for distributed Kalman filtering and smoothing’, IEEE Trans. Autom. Control, 2010, 55, (9), pp. 20692084 (doi: 10.1109/TAC.2010.2042987).
    26. 26)
      • 26. Song, E., Zhu, Y., Zhou, J., You, Z.: ‘Optimal Kalman filtering fusion with cross-correlated sensor noises’, Automatica, 2007, 43, (8), pp. 14501456 (doi: 10.1016/j.automatica.2007.01.010).
    27. 27)
      • 27. Alriksson, P., Rantzer, A.: ‘Distributed Kalman filtering using weighted averaging’. Proc. 17th Int. Symp. Mathematical Theory of Networks and Systems, Kyoto, Japan, July 2006.
    28. 28)
      • 28. Olfati-Saber, R.: ‘Distributed Kalman filter with embedded consensus filters’. Proc. 44th IEEE Conf. Decision and Control, and European Control Conf., December 2005, pp. 81798184.
    29. 29)
      • 29. Olfati-Saber, R., Shamma, J.S.: ‘Consensus filters for sensor networks and distributed sensor fusion’. Proc. 44th IEEE conf. decision and control, and the European Control Conf.Seville, Spain, December 2005, pp. 66986703.
    30. 30)
      • 30. Olfati-Saber, R.: ‘Distributed Kalman filtering for sensor networks’. Proc. 46th IEEE Conf. Decision and Control, New Orleans, LA, December 2007, pp. 54925498.
    31. 31)
      • 31. Stanković, S.S., Stanković, M.S., Stipanović, D.M.: ‘Consensus based overlapping decentralized estimation with missing observations and communication faults’, Automatica, 2009, 45, (6), pp. 13971406 (doi: 10.1016/j.automatica.2009.02.014).
    32. 32)
      • 32. Xiao, J.J., Luo, Z.Q.: ‘Decentralized estimation in an inhomogeneous sensing environment’, IEEE Trans. Inf. Theory, 2005, 51, (10), pp. 35643575 (doi: 10.1109/TIT.2005.855580).
    33. 33)
      • 33. Kailath, T., Sayed, A.H., Hassibi, B.: ‘Linear estimation’ (Prentice-Hall, 2000).
    34. 34)
      • 34. Boyd, S., Diaconis, P., Xiao, L.: ‘Fastest mixing markov chain on a graph’, SIAM Rev., 2004, 46, (4), pp. 667689 (doi: 10.1137/S0036144503423264).
    35. 35)
      • 35. Sayed, A.H., Lopes, C.G.: ‘Adaptive processing over distributed networks’, IEICE Trans. Fundam. Electron., Commun. Comput. Sci., 2007, E90-A, (8), pp. 15041510 (doi: 10.1093/ietfec/e90-a.8.1504).
    36. 36)
      • 36. Xiao, J.J., Cui, S.G., Luo, Z.Q., Goldsmith, A.J.: ‘Power scheduling of universal decentralized estimation in sensor networks’, IEEE Trans. Signal Process., 2006, 54, (2), pp. 413422 (doi: 10.1109/TSP.2005.861898).
    37. 37)
      • 37. Fang, J., Li, H.: ‘Distributed consensus with quantized data via sequence averaging’, IEEE Trans. Signal Process., 2010, 58, (2), pp. 944948 (doi: 10.1109/TSP.2009.2032951).
    38. 38)
      • 38. Sun, S., Lin, J., Xie, L., Xiao, W.: ‘Quantized Kalman Filtering’. in Intelligent Control, 2007. ISIC 2007. IEEE 22nd Int. Symp., 2007, pp. 712.
    39. 39)
      • 39. Coope, I.D.: ‘On matrix trace inequalities and related topics for products of Hermitian matrix’, J. Math. Anal. Appl., 1994, 188, (3), pp. 9991001 (doi: 10.1006/jmaa.1994.1475).
    40. 40)
      • 40. Heinzelman, W.B.: ‘Application-specific protocol architectures for wireless networks’. PhD thesis, Massachusetts Institute of Technology, 2000.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2012.0274
Loading

Related content

content/journals/10.1049/iet-spr.2012.0274
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address