access icon free Modified maximum a posteriori decoder architecture for low-power consumption

A modified architecture for minimised power consumption in the maximum a posteriori (MAP) decoder based on retiming for register minimisation is proposed in this study. Retiming for register minimisation technique is introduced in the trellis unit of the MAP decoder. Forward state metric and reverse state metric values are retained till the end of the time scale ‘(k −1)’ to calculate log-likelihood ratio (LLR) value. By applying this technique, the number of registers gets reduced, where the node has several output edges carrying the same signal. Depending on the time scale, memory latches reduces from k[(k − 1)/2] to ‘(k 1)’ in the LLR unit of MAP decoder. Using this technique, optimised architecture is derived and the authors have achieved the power consumption of 173.2 mW, which is less than 12.21% with the reported values, for K = 5, code rate ½ and time scale k = 4. When forward flip-flop retiming is applied 6.08% clock frequency increased and 5.53% total time delay reduced as compared with the register retiming technique.

Inspec keywords: minimisation; maximum likelihood decoding; energy consumption; flip-flops

Other keywords: clock frequency; register minimisation technique; MAP decoder; memory latches; low-power consumption; log-likelihood ratio value; maximum a posteriori decoder architecture; reverse state metric value; forward state metric value; LLR unit

Subjects: Codes; Optimisation techniques; Logic circuits

References

    1. 1)
      • 3. Berrou, C., Glavieux, A., Thitimajshima, P.: ‘Near Shannon limit error-correcting coding and decoding: turbo codes (1)’. Proc. IEEE Int. Conf. on Communications (ICC), 1993, pp. 10641070.
    2. 2)
      • 14. Lin, C.H., Chen, C.Y., Tsai, T.H., Wu, A.Y.: ‘Low-power memory-reduced trace back MAP decoding for double-binary convolutional turbo decoder’, IEEE Trans. Circuits Syst. I, 2009, 56, (5), pp. 10051016 (doi: 10.1109/TCSI.2009.2017118).
    3. 3)
      • 30. Wang, J., Zhou, H.: ‘An efficient incremental algorithm for min-area retiming’. IEEE Design Automation Conf. (DAC), 2008, pp. 528533.
    4. 4)
      • 12. Chang, X., Zhang, M., Zhang, G., Zhang, Z., Wang, J.: ‘Adaptive clock gating technique for low power IP core in SoC design’. Proc. ISCAS, 2007, pp. 21202123.
    5. 5)
      • 6. Benini, L., De Micheli, G., Macii, A., Macii, E., Poncino, M., Scarsi, R.: ‘Glitch power minimization by selective gate freezing’, IEEE Trans. Very Large Scale Integr. Syst., 2000, 8, (3), pp. 287298 (doi: 10.1109/92.845895).
    6. 6)
      • 9. Bougard, B., Giulietti, A., Perre, L.V., Catthoor, F.: ‘A class of power efficient VLSI architectures for high speed Turbo-decoding’. Proc. IEEE Global Telecommunications Conf. (GLOBECOM), 2002, pp. 549553.
    7. 7)
      • 34. XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices, UG687 (v 14.1) April 24, 2012.
    8. 8)
      • 33. Parhi, K.K.: ‘VLSI digital signal processing systems design and implementation’ (A Wiley-Interscience publication, 1999).
    9. 9)
      • 35. Yeap, G.K.: ‘Practical low power digital VLSI design, Boston’ (Kulwer academic publishers, 1998).
    10. 10)
      • 17. Chen, J., Abedi, A.: ‘Distributed Turbo coding and decoding for wireless sensor networks’, IEEE Commun. Lett., 2011, 15, (2), pp. 166168 (doi: 10.1109/LCOMM.2011.010311.102118).
    11. 11)
      • 5. Lakshminarayana, G., Raghunathan, A.: ‘Power management in high-level synthesis’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 1999, 7, (1), pp. 715 (doi: 10.1109/92.748195).
    12. 12)
      • 7. Miyauchi, T., Yamamoto, K., Kan, T.Y.M., Mizutani, Y., Hattori, M.: ‘High-performance SISO decoder VLSI implementation for decoding Turbo codes’. Proc. IEEE Global Telecommunications Conf. (GLOBECOM), 2001, pp. 305309.
    13. 13)
      • 10. Boutillon, E., Gross, W.J., Gulak, P.G.: ‘VLSI architectures for the MAP algorithm’, IEEE Trans. Commun., 2003, 51, (2), pp. 175185 (doi: 10.1109/TCOMM.2003.809247).
    14. 14)
      • 11. Gang, Y., Arslan, T., Erdogan, A.T.: ‘An efficient pre-trace back approach for Viterbi decoding in wireless communication’. Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), 2005, pp. 54415444.
    15. 15)
      • 28. Huang, S.-H., Lu, F.-P., Yu, W.-C., Nieh, Y.-T.: ‘Race-condition-aware retiming’. IEEE VLSI-TSA Int. Symp. on VLSI Design, Automation and Test (VLSI-TSA-DAT), 2005, pp. 5962.
    16. 16)
      • 25. Tien, T.C., Su, H.P., Tsay, Y.W.: ‘Integrating logic retiming and register placement’, IEEE/ACM Int. Conf. on Computer-Aided Design(ICCAD), 1998, pp. 136139.
    17. 17)
      • 21. Jackuline, S., Jeevitha, J., Nidhi, M.A.: ‘A new architecture for the generation of picture based CAPTCHA: double binary convolutional turbo decoder using low power memory reduced trace back MAP decoding’. Proc. IEEE Int. Conf. on Electronics Computer Technology (ICECT), 2011, pp. 382385.
    18. 18)
      • 20. Rathi, V., Andriyanova, I.: ‘Some results on MAP decoding of non-binary LDPC codes over the BEC’, IEEE Trans. Inf. Theory, 2011, 57, (4), pp. 22252242 (doi: 10.1109/TIT.2011.2110930).
    19. 19)
      • 27. Cong, J., Wu, C.: ‘Optimal FPGA mapping and retiming with efficient initial state computation’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 1999, 18, (11), pp. 15951607 (doi: 10.1109/43.806805).
    20. 20)
      • 4. Garret, D., Stan, M.: ‘Low power architecture of the soft-output Viterbi algorithm’. Proc. Int. Symp. on Low Power Electronics and Design (ISLPED), 1998, pp. 262267.
    21. 21)
      • 19. Kudekar, S., Richardson, T.J., Urbanke, R.L.: ‘Threshold saturation via spatial coupling: why convolutional LDPC ensembles perform so well over the BEC’, IEEE Trans. Inf. Theory, 2011, 57, (2), pp. 803834 (doi: 10.1109/TIT.2010.2095072).
    22. 22)
      • 18. Abhishek, S.K., Chakrabarti, S.: ‘Performance evaluation of asymmetric turbo codes using log-MAP decoding technique’. Proc. IEEE Int. Conf. on Devices and Communications, 2011, pp. 15.
    23. 23)
      • 1. Bahl, L.R., Cocke, J., Jelinek, F., Raviv, J.: ‘Optimal decoding of linear codes for minimizing symbol error rates’. IEEE Trans. Inf. Theory, 1974, 20, (2), pp. 284287.
    24. 24)
      • 22. Yang, F., Chen, J., Zong, P., Zhang, S., Zhang, Q.: ‘Joint iterative decoding for pragmatic irregular LDPC-coded multi-relay cooperations’, Int. J. Electron.’, 2011, 10, (98), pp. 13831397 (doi: 10.1080/00207217.2011.609964).
    25. 25)
      • 8. Wu, C.-M., Shieh, M.-D., Wu, C.-H.: ‘Memory arrangements in Turbo decoders using Sliding-window BCJR algorithm’. Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), 2002, pp. 557560.
    26. 26)
      • 23. Pan, P.: ‘Continuous retiming: algorithms and applications’. Proc. IEEE Int. Conf. on Computer Design: VLSI in Computers and Processors, 1997, pp. 116121.
    27. 27)
      • 24. Denk, T.C., Parhi, K.K.: ‘Exhaustive scheduling and retiming of digital signal processing systems’, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 1998, 45, (7), pp. 821838 (doi: 10.1109/82.700929).
    28. 28)
      • 13. Muller, O., Baghdadi, A., Jezequel, M.: ‘From parallelism levels to a multi-ASIP architecture for Turbo decoding’, IEEE Trans. Very Large Scale Integr. Syst., 2009, 17, (1), pp. 92102 (doi: 10.1109/TVLSI.2008.2003164).
    29. 29)
      • 31. Karim, M.U., Khan, M.U.K., Khawaja, Y.M.: ‘An area reduced, speed optimized implementation of Viterbi decoder’. Int. Conf. on Computer Networks and Information Technology (ICCNIT), 2011, pp. 9398.
    30. 30)
      • 29. Tang, C.-H., Wong, C.-C., Chen, C.-L., Lin, C.-C., Chang, H.-C.: ‘A 952MS/s Max-Log MAP decoder chip using Radix-4 Ã-4 ACS Architecture’. IEEE Asian Solid-State Circuits Conf. (ASSCC), 2006, pp. 7982.
    31. 31)
      • 26. Denk, T.C., Parhi, K.K.: ‘Two-dimensional retiming [VLSI design]’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 1999, 7, (2), pp. 198211 (doi: 10.1109/92.766747).
    32. 32)
      • 2. Black, P.J., Meng, T.H.: ‘A 140-Mb/s, 32-state. Radix4 Viterbi decoder’, Proc. IEEE J. Solid-State Circuits, 1992, 27, (12), pp. 18771885 (doi: 10.1109/4.173118).
    33. 33)
      • 15. Chavet, C., Coussy, P.: ‘A memory approach for parallel interleaver design with multiples read and write accesses’. Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), 2010, pp. 14.
    34. 34)
      • 16. Martina, M., Masera, G.: ‘State metric compression techniques for turbo decoder architectures’, IEEE Trans. Circuits Syst., 2011, 58, (5), pp. 11191128 (doi: 10.1109/TCSI.2010.2090566).
    35. 35)
      • 32. Sklar, B.: ‘Digital communications fundamentals and applications’ (Pearson Education, 2003).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2012.0271
Loading

Related content

content/journals/10.1049/iet-spr.2012.0271
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading