© The Institution of Engineering and Technology
Climate change and climate variability have become issues of global concern. Conventional Fourier analysis is the most common analysis method in the frequency domain. In this study, an evaluation model using limited terms of Fourier series is introduced to describe yearly air temperature movement by month and daily air temperature by hour. Then a forecast method based on the Fourier analysis in the leastsquare sense is proposed that incorporating with the leastsquare method, the Fourierseries model is extended to forecast that predict future temperature movements based on limited previous observation values. The forecast model is built by finding its optimum Fourier coefficients in the leastsquare sense based on the previous observed temperature movements. Experiments including yearly and daily air temperature evaluation and forecast at several observation stations in China, yield satisfied results agreeing well with actual observation values. Experimental results demonstrate that the Fourier evaluation model evaluates the annual and the daily air temperature movements most closely by about 5term and 11term Fourier series, respectively. The forecast model predicts both the annual and daily air temperature movements most fit with about 4term Fourier series. Result analysis indicates workability and effectiveness of the proposed.
References


1)

1. StatSoft, Inc: ‘Electronic statistics textbook’ (StatSoft, WEB: , Tulsa, OK, 2012).

2)

2. Beddington, J.R., Asaduzzaman, M., Clark, M.E., et al: ‘What next for agriculture after Durban?’, Science, 2012, 335, (6066), pp. 289–290.

3)

3. Zongchang, Y.: ‘A study on the orbit of air temperature movement’, J. Environmen. Modeling Assess., 2007, 12, (2), pp. 131–143.

4)

4. Salcedo, A.C., Baldesano Recio, J.M.: ‘Fourier analysis of meteorological data to obtain a typical annual time function’, Sol. Energy, 1984, 32, (4), pp. 479–488.

5)

5. Fagbenle, R.: ‘Fourier analysis of climatological data series in a tropical environment’, Int. J. Energy Res., 1995, 19, (2), pp. 117–123.

6)

6. Ghil, M., Allen, M.R., Dettinger, M.D., et al: ‘Advanced spectral methods for climatic time series’, Rev. Geophys., 2002, 40, (1), pp. 11–141.

7)

7. Chiang, S.H., Lay, L.V.: ‘Spectral analysis of Taiwan's rainfall regional and air temperature’, J. Geogr. Sci., 2002, 32, pp. 55–74.

8)

8. GarcésVargas, J.: ‘Interannual variability in the thermal structure of an oceanic time series station off Ecuador (1990–2003) associated with El Niñoevents’, DeepSea Res. I, 2005, 52, (10), pp. 1789–1805.

9)

9. Jänicke, H., Böttinger, M., Mikolajewicz, U., Scheuermann, G.: ‘Visual exploration of climate variability changes using wavelet analysis’, IEEE Trans. Vis. Comput. Graph., 2009, 15, (6), pp. 1375–82.

10)

10. Fuming, W.: ‘Method of temperature forecast in ten days and its use in the mountainous region of west Hubei’, J. Mt. Res., 1988, 6, (1), pp. 38–41.

11)

11. Boland, J.: ‘Time series analysis of climatic variables’, Sol. Energy, 1995, 55, (5), pp. 377–388.

12)

12. Ribak Oleg, O.: ‘Statistical structure of air surface temperature time series’, Atmosfera, 1997, 10, (2), pp. 59–74.

13)

13. Kesteven, J., Hutchinson, M.: ‘Spatial modeling of climate variables on a continental scale’. Proc. Third Int. Conf./Workshop on Integrating GIS and Environmental Modeling, NCGIA, Santa Barbara, California, 1996.

14)

14. Li, X., Cheng, G.D., Lu, L.: ‘Spatial analysis of air temperature in the QinghaiTibet Plateau’, Arctic Antarctic Alpine Res., 2005, 37, (2), pp. 246–252.

15)

15. Tang, G.L., Ding, Y.H., Wang, S.W., Ren, G.Y., Liu, H.B., Zhang, L.: ‘Comparative analysis of the time series of surface air temperature over China for the last 100 years’, Adv. Clim. Change Res., 2009, 5, (2), pp. 71–78.

16)

16. Cook, D.F., Wolfe, M.L.: ‘A backpropagation neural network to predict average air temperatures’, Ai Appl., 1991, 5, (1), pp. 40–46.

17)

17. Khotanzad, A., Davis, M.H., Abaye, A., Maratukulam, D.J.: ‘An artificial neural network hourly temperature forecaster with applications in temperature forecasting’, IEEE Trans. Power Syst., 1996, 11, (2), pp. 870–876.

18)

18. Buffa, F., Porceddu, I.: ‘Temperature forecast and dome seeing minimization – I: a case study using a neural network model’, Astron. Astrophys. Suppl. Ser., 1997, 126, (3), pp. 547–553.

19)

19. Corchado, J.M., Fyfe, C.: ‘Unsupervised neural method for temperature forecasting’, Artif. Intell. Eng., 1999, 13, (4), pp. 351–357.

20)

20. Lanza, P.A., Cosme, J.M.: ‘A shortterm temperature forecaster based on a novel radial basis functions neural network’, Int. J. Neural Syst., 2001, 11, (1), pp. 71–77.

21)

21. Duhoux, M., Suykens, J., De Moor, B., Vandewalle, J.: ‘Improved longterm temperature prediction by chaining of neural networks’, Int. J. Neural Syst., 2001, 11, (1), pp. 1–10.

22)

22. Gonzalez Lanza, P.A., Zamarreno Cosme, J.M.: ‘A shortterm temperature forecaster based on a state space neural network’, Eng. Appl. Artif. Intell., 2002, 15, (5), pp. 459–464.

23)

23. Ferreira, P.M., Faria, E.A., Ruano, A.E.: ‘Neural network models in greenhouse air temperature prediction’, Neurocomputing, 2002, 43, (1–4), pp. 51–75.

24)

24. Bodri, L., Cermak, V.: ‘Prediction of surface air temperatures by neural network, example based on threeyear temperature monitoring at Sporilov station’, Stud. Geophys. Geod., 2003, 47, (1), pp. 173–184.

25)

25. Humlum, O., Solheim, J.E., Stordahl, K.: ‘Identifying natural contributions to late Holocene climate change’, Glob. Planet. Change, 2011, 79, (1–2), pp. 145–156.

26)

26. Walker, J.S.: ‘Fourier analysis’ (Oxford University Press, 1988).

27)

27. Oppenheim, A.V., Willsky, A.S., Hamid, S.: ‘Signals & systems’ (Prentice Hall, 1996, 2nd edn.).

28)

28. Zheng, J.L., Ying, Q.H., Yang, L.W.: ‘Signals & systems’ (China Higher Education Press, Beijing, 2011, 3rd edn.).

29)

29. Chatterjee, S., Hadi, A., Price, B.: ‘Simple linear regression. Ch. 2 in regression analysis by example’ (Wiley, New York, 2000, 3rd edn.) pp. 21–50.

30)

30. Beichen Weather bureau, Tianjin, China, retrieved in 2009. .

31)

31. Huaihua Weather bureau, Hunan, Chinax, retrieved in 2009. .

32)

32. Guizhou Weather Information Website, China, retrieved in 2010. .

33)

33. Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., Vanthienen, J.: ‘Benchmarking stateoftheart classification algorithms for credit scoring’, J. Oper. Res. Soc., 2003, 54, (6), pp. 627–635.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietspr.2012.0255
Related content
content/journals/10.1049/ietspr.2012.0255
pub_keyword,iet_inspecKeyword,pub_concept
6
6