Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fourier analysis-based air temperature movement analysis and forecast

Climate change and climate variability have become issues of global concern. Conventional Fourier analysis is the most common analysis method in the frequency domain. In this study, an evaluation model using limited terms of Fourier series is introduced to describe yearly air temperature movement by month and daily air temperature by hour. Then a forecast method based on the Fourier analysis in the least-square sense is proposed that incorporating with the least-square method, the Fourier-series model is extended to forecast that predict future temperature movements based on limited previous observation values. The forecast model is built by finding its optimum Fourier coefficients in the least-square sense based on the previous observed temperature movements. Experiments including yearly and daily air temperature evaluation and forecast at several observation stations in China, yield satisfied results agreeing well with actual observation values. Experimental results demonstrate that the Fourier evaluation model evaluates the annual and the daily air temperature movements most closely by about 5-term and 11-term Fourier series, respectively. The forecast model predicts both the annual and daily air temperature movements most fit with about 4-term Fourier series. Result analysis indicates workability and effectiveness of the proposed.

References

    1. 1)
      • 11. Boland, J.: ‘Time series analysis of climatic variables’, Sol. Energy, 1995, 55, (5), pp. 377388.
    2. 2)
      • 28. Zheng, J.L., Ying, Q.H., Yang, L.W.: ‘Signals & systems’ (China Higher Education Press, Beijing, 2011, 3rd edn.).
    3. 3)
      • 8. Garcés-Vargas, J.: ‘Inter-annual variability in the thermal structure of an oceanic time series station off Ecuador (1990–2003) associated with El Niñoevents’, Deep-Sea Res. I, 2005, 52, (10), pp. 17891805.
    4. 4)
      • 29. Chatterjee, S., Hadi, A., Price, B.: ‘Simple linear regression. Ch. 2 in regression analysis by example’ (Wiley, New York, 2000, 3rd edn.) pp. 2150.
    5. 5)
      • 2. Beddington, J.R., Asaduzzaman, M., Clark, M.E., et al: ‘What next for agriculture after Durban?’, Science, 2012, 335, (6066), pp. 289290.
    6. 6)
      • 32. Guizhou Weather Information Website, China, retrieved in 2010. Available at http://www.121net.com.cn.
    7. 7)
      • 12. Ribak Oleg, O.: ‘Statistical structure of air surface temperature time series’, Atmosfera, 1997, 10, (2), pp. 5974.
    8. 8)
      • 31. Huaihua Weather bureau, Hunan, Chinax, retrieved in 2009. Available at http://www.hhqx.com.
    9. 9)
      • 4. Salcedo, A.C., Baldesano Recio, J.M.: ‘Fourier analysis of meteorological data to obtain a typical annual time function’, Sol. Energy, 1984, 32, (4), pp. 479488.
    10. 10)
      • 24. Bodri, L., Cermak, V.: ‘Prediction of surface air temperatures by neural network, example based on three-year temperature monitoring at Sporilov station’, Stud. Geophys. Geod., 2003, 47, (1), pp. 173184.
    11. 11)
      • 16. Cook, D.F., Wolfe, M.L.: ‘A back-propagation neural network to predict average air temperatures’, Ai Appl., 1991, 5, (1), pp. 4046.
    12. 12)
      • 15. Tang, G.L., Ding, Y.H., Wang, S.W., Ren, G.Y., Liu, H.B., Zhang, L.: ‘Comparative analysis of the time series of surface air temperature over China for the last 100 years’, Adv. Clim. Change Res., 2009, 5, (2), pp. 7178.
    13. 13)
      • 6. Ghil, M., Allen, M.R., Dettinger, M.D., et al: ‘Advanced spectral methods for climatic time series’, Rev. Geophys., 2002, 40, (1), pp. 1-11-41.
    14. 14)
      • 23. Ferreira, P.M., Faria, E.A., Ruano, A.E.: ‘Neural network models in greenhouse air temperature prediction’, Neurocomputing, 2002, 43, (1–4), pp. 5175.
    15. 15)
      • 30. Beichen Weather bureau, Tianjin, China, retrieved in 2009. Available at http://www.bcqx.net.
    16. 16)
      • 9. Jänicke, H., Böttinger, M., Mikolajewicz, U., Scheuermann, G.: ‘Visual exploration of climate variability changes using wavelet analysis’, IEEE Trans. Vis. Comput. Graph., 2009, 15, (6), pp. 137582.
    17. 17)
      • 1. StatSoft, Inc: ‘Electronic statistics textbook’ (StatSoft, WEB: http://www.statsoft.com/textbook, Tulsa, OK, 2012).
    18. 18)
      • 13. Kesteven, J., Hutchinson, M.: ‘Spatial modeling of climate variables on a continental scale’. Proc. Third Int. Conf./Workshop on Integrating GIS and Environmental Modeling, NCGIA, Santa Barbara, California, 1996.
    19. 19)
      • 5. Fagbenle, R.: ‘Fourier analysis of climatological data series in a tropical environment’, Int. J. Energy Res., 1995, 19, (2), pp. 117123.
    20. 20)
      • 26. Walker, J.S.: ‘Fourier analysis’ (Oxford University Press, 1988).
    21. 21)
      • 10. Fuming, W.: ‘Method of temperature forecast in ten days and its use in the mountainous region of west Hubei’, J. Mt. Res., 1988, 6, (1), pp. 3841.
    22. 22)
      • 33. Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., Vanthienen, J.: ‘Benchmarking state-of-the-art classification algorithms for credit scoring’, J. Oper. Res. Soc., 2003, 54, (6), pp. 627635.
    23. 23)
      • 25. Humlum, O., Solheim, J.E., Stordahl, K.: ‘Identifying natural contributions to late Holocene climate change’, Glob. Planet. Change, 2011, 79, (1–2), pp. 145156.
    24. 24)
      • 14. Li, X., Cheng, G.-D., Lu, L.: ‘Spatial analysis of air temperature in the Qinghai-Tibet Plateau’, Arctic Antarctic Alpine Res., 2005, 37, (2), pp. 246252.
    25. 25)
      • 17. Khotanzad, A., Davis, M.H., Abaye, A., Maratukulam, D.J.: ‘An artificial neural network hourly temperature forecaster with applications in temperature forecasting’, IEEE Trans. Power Syst., 1996, 11, (2), pp. 870876.
    26. 26)
      • 21. Duhoux, M., Suykens, J., De Moor, B., Vandewalle, J.: ‘Improved long-term temperature prediction by chaining of neural networks’, Int. J. Neural Syst., 2001, 11, (1), pp. 110.
    27. 27)
      • 18. Buffa, F., Porceddu, I.: ‘Temperature forecast and dome seeing minimization – I: a case study using a neural network model’, Astron. Astrophys. Suppl. Ser., 1997, 126, (3), pp. 547553.
    28. 28)
      • 22. Gonzalez Lanza, P.A., Zamarreno Cosme, J.M.: ‘A short-term temperature forecaster based on a state space neural network’, Eng. Appl. Artif. Intell., 2002, 15, (5), pp. 459464.
    29. 29)
      • 20. Lanza, P.A., Cosme, J.M.: ‘A short-term temperature forecaster based on a novel radial basis functions neural network’, Int. J. Neural Syst., 2001, 11, (1), pp. 7177.
    30. 30)
      • 27. Oppenheim, A.V., Willsky, A.S., Hamid, S.: ‘Signals & systems’ (Prentice Hall, 1996, 2nd edn.).
    31. 31)
      • 7. Chiang, S.-H., Lay, L.-V.: ‘Spectral analysis of Taiwan's rainfall regional and air temperature’, J. Geogr. Sci., 2002, 32, pp. 5574.
    32. 32)
      • 3. Zong-chang, Y.: ‘A study on the orbit of air temperature movement’, J. Environmen. Modeling Assess., 2007, 12, (2), pp. 131143.
    33. 33)
      • 19. Corchado, J.M., Fyfe, C.: ‘Unsupervised neural method for temperature forecasting’, Artif. Intell. Eng., 1999, 13, (4), pp. 351357.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2012.0255
Loading

Related content

content/journals/10.1049/iet-spr.2012.0255
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address