access icon free Design and convergence analysis of stochastic frequency estimator using contraction theory

This study investigates the design and analysis of an estimator for unknown frequencies of a sinusoid in the presence of additive noise. A dynamic stochastic estimator is proposed to ensure simultaneous globally convergent estimation of the state and the frequencies of a sinusoid comprising multiple frequencies. Approach given in this study exploits the results of stochastic contraction theory and the observers. The concept of contraction theory related to semi-contracting systems is used to show the asymptotic convergence of the proposed non-linear estimator. The boundedness and convergence of the state and frequencies estimates for all initial conditions and frequency values has been shown analytically. The proposed estimator is generalised to estimate n-unknown frequencies of a given noisy sinusoid. Numerical simulations of estimator are presented for different combinations of frequencies to justify the claim.

Inspec keywords: signal processing; nonlinear estimation; convergence; numerical analysis; observers; frequency estimation

Other keywords: nonlinear estimator; contraction theory; dynamic stochastic estimator; multiple frequencies; asymptotic convergence; numerical simulations; frequency values; stochastic frequency estimator; semicontracting systems; additive noise; observers; sinusoidal signals

Subjects: Other topics in statistics; Signal processing and detection; Signal processing theory; Other numerical methods; Other topics in statistics; Other numerical methods; Simulation, modelling and identification

References

    1. 1)
      • 28. Lohmiller, W., Slotine, J.J.E.: ‘Control system design for mechanical systems using contraction theory’, IEEE Trans. Autom. Control, 2000, 45, (5), pp. 884889 (doi: 10.1109/9.855568).
    2. 2)
      • 30. Arnold, L.: ‘Stochastic differential equations: theory and applications’ (Wiley, 1974).
    3. 3)
      • 34. Higham, D.: ‘An algorithmic introduction to numerical simulation of stochastic differential equations’, SIAM Rev., 2001, 43, pp. 525546 (doi: 10.1137/S0036144500378302).
    4. 4)
      • 4. Kay, S.: ‘A fast and accurate single frequency estimator’, IEEE Trans. Acoust. Speech Signal Process., 1991, 39, pp. 12031205 (doi: 10.1109/78.80973).
    5. 5)
      • 29. Pham, Q.C., Tabareau, N., Slotine, J.J.E.: ‘A contraction theory approach to stochastic incremental stability’, IEEE Trans. Autom. Control, 2009, 54, (4), pp. 816820 (doi: 10.1109/TAC.2008.2009619).
    6. 6)
      • 23. Jouffroy, J.: ‘Some ancestors of contraction analysis’. Proc. Conf. on Decision and Control, Seville, Spain, 2005, pp. 54505455.
    7. 7)
      • 5. Tretter, S.A.: ‘Estimating the frequency of a noisy sinusoid by linear regression’, IEEE Trans. Inf. Theory, 1985, IT-31, pp. 832835 (doi: 10.1109/TIT.1985.1057115).
    8. 8)
      • 16. Regalia, P.A.: ‘An improved lattice-based adaptive IIR notch filter’, IEEE Trans. Signal Process., 1991, 39, pp. 21242128 (doi: 10.1109/78.134453).
    9. 9)
      • 13. Hall, S., Wereley, N.: ‘Performance of higher harmonic control algorithms for helicopter vibration reduction’, J. Guid., Control Dyn., 1993, 116, (4), pp. 793797 (doi: 10.2514/3.21085).
    10. 10)
      • 26. Sharma, B.B., Kar, I.N.: ‘Contraction based adaptive control of a class of nonlinear systems’. Proc. American Control Conf., Hyatt Regency Riverfront, St. Louis, MO, USA, 2009.
    11. 11)
      • 1. Kay, S.: ‘Modern spectral estimation: theory and applications’ (Prentice-Hall, Englewood Cliffs, NJ, 1988).
    12. 12)
      • 18. Xia, X.: ‘Global frequency estimation using adaptive identifiers’, IEEE Trans. Autom. Control, 2002, 47, (7), pp. 11881193 (doi: 10.1109/TAC.2002.800670).
    13. 13)
      • 8. Dash, P.K., Hasan, S.: ‘A fast recursive algorithm for the estimation of frequency, amplitude, and phase of noisy sinusoid’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 48474856 (doi: 10.1109/TIE.2011.2119450).
    14. 14)
      • 35. Jouffroy, J., Fossen, T.I.: ‘A tutorial on incremental stability analysis using contraction theory’. Proc. Modeling, Identification and Control, 2010, pp. 93106.
    15. 15)
      • 10. Presti, L.L., Olmo, G., Magli, E.: ‘Joint estimation of the number and the frequencies of multiple sinusoids from very noisy data’. Int. Symp. on Signals, Systems, and Electronics, PISA, Italy, 1998.
    16. 16)
      • 14. Herzog, R., Buhler, P., Gahler, C., Larsonneur, R.: ‘Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings’, IEEE Trans. Control Syst. Technol., 1996, 4, pp. 580586 (doi: 10.1109/87.531924).
    17. 17)
      • 9. Zhang, Z.G., Chan, S.C., Tsui, K.M.: ‘A recursive frequency estimator using linear prediction and a Kalman-Filter-based iterative algorithm’, IEEE Trans. Circuit Syst.-II, 2008, 55, (6), pp. 576580 (doi: 10.1109/TCSII.2007.916837).
    18. 18)
      • 19. Pulido, G.O., Toledo, B.C., Loukianov, A.: ‘Globally convergent estimator for n frequencies’, IEEE Trans. Autom. Control, 2002, 47, (5), pp. 857863 (doi: 10.1109/TAC.2002.1000286).
    19. 19)
      • 20. Hou, M.: ‘Estimation of sinusoidal frequencies and amplitudes using adaptive identifier and observer’, IEEE Trans. Autom. Control, 2007, 52, (3), pp. 493499 (doi: 10.1109/TAC.2006.890389).
    20. 20)
      • 27. Zamani, M., Tabuada, P.: ‘Backstepping design for incremental stability’, IEEE Trans. Autom. Control, 2011, 56, (9), pp. 21842189 (doi: 10.1109/TAC.2011.2158135).
    21. 21)
      • 31. Kushner, H.: ‘Stochastic stability and control’ (New York Academic Press, 1967).
    22. 22)
      • 6. Zhang, Z., Jakobsson, A., Macleod, M.D., Chambers, J.A.: ‘A hybrid phase-based single frequency estimator’, IEEE Signal Process. Lett., 2005, 12, pp. 657660 (doi: 10.1109/LSP.2005.853043).
    23. 23)
      • 25. Lohmiller, W., Slotine, J.J.E.: ‘On contraction analysis for nonlinear systems’, Automatica, 1998, 34, (6), pp. 683696 (doi: 10.1016/S0005-1098(98)00019-3).
    24. 24)
      • 7. Fu, H., Kam, P.Y.: ‘MAP/ML estimation of the frequency and phase of a single sinusoid in noise’, IEEE Trans. Signal Process., 2007, 55, (3), pp. 834845 (doi: 10.1109/TSP.2006.888055).
    25. 25)
      • 12. Fuller, C., Von, F.A.: ‘Active control of sound and vibration’, IEEE Control Syst. Mag., 1996, 15, pp. 919 (doi: 10.1109/37.476383).
    26. 26)
      • 33. Slotine, J.J.E., Li, W.: ‘Applied nonlinear control’ (Prentice-Hall, Englewood Cliffs, NJ, 1991).
    27. 27)
      • 32. Gikhman, I., Skorokhod, A.: ‘Introduction to the theory of random processes’ (Philadelphia, 1969).
    28. 28)
      • 2. Watanabe, A.: ‘Formant estimation method using inverse-filter control’, IEEE Trans. Speech Audio Process., 2001, 9, (4), pp. 317326 (doi: 10.1109/89.917677).
    29. 29)
      • 22. Sharma, B.B., Kar, I.N.: ‘Design of asymptotically convergent frequency estimator using contraction theory’, IEEE Trans. Autom. Control, 2008, 53, (8), pp. 19321937 (doi: 10.1109/TAC.2008.927682).
    30. 30)
      • 17. Bobtsov, A.: ‘New approach to the problem of globally convergent frequency estimator’, Int. J. Adapt. Control Signal Process., 2008, 22, (3), pp. 306317 (doi: 10.1002/acs.971).
    31. 31)
      • 24. Jouffroy, J., Slotine, J.J.E.: ‘Methodological remarks on contraction theory’. Proc. 43rd IEEE Conf. on Decision and Control (CDC), 2004, pp. 25372543.
    32. 32)
      • 21. Marino, R., Tomei, P.: ‘Global estimation of n unknown frequencies’, IEEE Trans. Autom. Control, 2002, 47, (8), pp. 13241328 (doi: 10.1109/TAC.2002.800761).
    33. 33)
      • 3. Thayer, J.F., Sollers, J.J., Padial, E.R., Vila, J.: ‘Estimating respiratory frequency from autoregressive spectral analysis of heart period’, IEEE Eng. Med. Biol. Mag., 2002, 21, (4), pp. 4145 (doi: 10.1109/MEMB.2002.1032638).
    34. 34)
      • 15. Hsu, L., Ortega, R., Damm, G.: ‘A globally convergent frequency estimator’, IEEE Trans. Automat. Control, 1999, 44, pp. 698713 (doi: 10.1109/9.754808).
    35. 35)
      • 11. Bodson, M., Douglas, S.C.: ‘Adaptive algorithms for the rejection of periodic disturbances with unknown frequency’, Automatica, 1997, 33, pp. 22132221 (doi: 10.1016/S0005-1098(97)00149-0).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2012.0251
Loading

Related content

content/journals/10.1049/iet-spr.2012.0251
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading