Time-varying multicarrier and single-carrier modulation systems

Time-varying multicarrier and single-carrier modulation systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The modulation system is an important part in all communication networks including wireline and wireless networks. Orthogonal frequency-division multiplexing/orthogonal frequency-division multiple access (OFDM/OFDMA) and single-carrier frequency-division multiple access (SCFDMA) are representatives of multicarrier and single-carrier modulations, which are widely used in different communication standards, like WiMAX and Long Term Evolution (LTE). However, all existed modulation systems use the fixed symbol block length or fixed subcarrier number. In the adaptive OFDM system the subcarrier number is still fixed, and just the symbol constellation mapping schemes are adaptively selected based on the subchannel quality. In this study, the author introduce a new concept, namely time-varying symbol block or time-varying subcarrier number into the modulation systems to improve the system performance. The author call the new modulation system time-varying OFDM (TV-OFDM), time-varying OFDMA (TV-OFDMA) for multicarrier modulation, and time-varying SCFDMA(TV-SCFDMA) for single-carrier modulation. Here, peak-to-average power ratio (PAPR) is used as criteria to change the symbol block length timely. The algorithm for determination of the symbol block length is presented. The simulation results show that the time-varying modulation schemes can clearly reduce the PAPR values for both multicarrier and single-carrier modulation systems.


    1. 1)
      • 1. Renfors, M., Siohan, P., Farhang-Boroujeny, B., Bader, F.: ‘Filter banks for next generation multicarrier wireless communications’, EURASIP J. Adv. Signal Process., 2010, Article ID 314193, vol. 1, pp. 12.
    2. 2)
      • 2. 3rd Generation Partnership Project,
    3. 3)
      • 3. Ochiai, H., Imai, H.: ‘Performance of the deliberate clipping with adaptive symbol selection for strictly band-limited OFDM systems’, IEEE J. Sel. Areas Commun., 2000, 18, (11), pp. 22702277.
    4. 4)
      • 4. Ju, S.M., Leung, S.H.: ‘Clipping on COFDM with phase on demand’, IEEE Commun. Lett., 2003, 7, (2), pp. 4951.
    5. 5)
      • 5. Jones, A.E., Wilkinson, T.A., Barton, S.K.: ‘Block coding scheme for reduction of peak-to-average envelope power ratio of multicarrier transmission systems’, IEE Electron. Lett., 1994, 30, (8), pp. 20982099.
    6. 6)
      • 6. Yang, K., Chang, S.: ‘Peak-to-average power control in OFDM using standard arrays of linear block codes’, IEEE Commun. Lett., 2003, 7, (4), pp. 174176.
    7. 7)
      • 7. Juwono, F.H., Gunawan, D.: ‘PAPR reduction using Huffman coding combined with clipping and filtering for OFDM transmitter’. Proc. CITISIA 2009, Monash, July 2009, pp. 344347.
    8. 8)
      • 8. Tarokh, V., Jafarkhani, H.: ‘On the computation and reduction of the peak-to-average power ratio in multicarrier communications’, IEEE Trans. Commun., 2000, 48, (1), pp. 3744.
    9. 9)
      • 9. Wang, X.B., Tjhung, T.T., Ng, C.S.: ‘Reduction of peak-to-average power ratio of OFDM system using A companding technique’, IEEE Trans. Broadcast., 1999, 45, (3), pp. 303307.
    10. 10)
      • 10. Jiang, T., Yang, Y., Song, Y.: ‘Exponential companding transform for PAPR reduction in OFDM systems’, IEEE Trans. Broadcast., 2005, 51, (2), pp. 244248.
    11. 11)
      • 11. Jiang, T., Yao, W., Guo, P., Song, Y., Qu, D.: ‘Two novel nonlinear companding schemes with iterative receiver to reduce PAPR in multicarrier modulation systems’, IEEE Trans. Broadcast., 2006, 52, (2), pp. 268273.
    12. 12)
      • 12. Tellado, J.: ‘Peak to average power ratio reduction for multicarrier modulation’. PhD thesis, University of Stanford, Stanford, 1999.
    13. 13)
      • 13. Yoo, S.S., Yoon, S., Kim, S.Y., Song, I.: ‘A novel PAPR reduction scheme for OFDM systems: Selective mapping of partial tones (SMOPT)’, IEEE Trans. Consum. Electron., 2006, 52, (1), pp. 4043.
    14. 14)
      • 14. Muller, S.H., Huber, J.B.: ‘OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences’, IEE Electron. Lett., 1997, 33, (5), pp. 3669.
    15. 15)
      • 15. Bauml, R.W., Fisher, R.F.H., Huber, J.B.: ‘Reducing the peak-to- average power ratio of multicarrier modulation by selected mapping’, IEE Electron. Lett., 1996, 32, (22), pp. 20562057.
    16. 16)
      • 16. Han, S.H., Lee, J.H.: ‘PAPR reduction of OFDM signals using a reduced complexity PTS technique’, IEEE Signal Process. Lett., 2004, 11, (11), pp. 887890.
    17. 17)
      • 17. Wang, C.L., Yuan, Q.Y.: ‘Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems’, IEEE Trans. Signal Process., 2005, 53, (12), pp. 46524660.
    18. 18)
      • 18. Heo, S.J., Noh, H.S., No, J.S., Shin, D.J.: ‘A modified SLM scheme with low complexity for PAPR reduction of OFDM systems’, IEEE Trans. Broadcast., 2007, 53, (4), pp. 804808.
    19. 19)
      • 19. Han, S.H., Lee, J.H.: ‘An overview of peak-to-average power ratio reduction techniques for multicarrier transmission’, IEEE Pers. Commun., 2005, 12, (2), pp. 5665.
    20. 20)
      • 20. Jiang, T., Wu, Y.: ‘An Overview: Peak-to-average power ratio reduction techniques for OFDM signals’, IEEE Trans. Broadcast., 2008, 54, (2), pp. 257268.
    21. 21)
      • 21. Ciochina, C., Sari, H.: ‘A Review of OFDMA and single-carrier FDMA and some recent results’, Adv. Electron. Telecommun., 2010, 1, (1), pp. 3540.
    22. 22)
      • 22. Myung, H.G., Goodman, D.J.: ‘Single carrier FDMA: a new air interface for long term evolution’ (A John Wiley and Sons, Ltd., Publication, 2008).
    23. 23)
      • 23. Noune, M., Nix, A.: ‘Frequency-domain precoding for single carrier frequency-division multiple access’, IEEE Commun. Mag., 2009, 47, (6), pp. 6874.
    24. 24)
      • 24. Zihuai, L., Pei, X., Vucetic, B., Sellathurai, M.: ‘Analysis of receiver algorithms for lte LTE SC-FDMA based uplink MIMO systems’, IEEE Trans. Wirel. Commun., 2010, 9, (1), pp. 6065.
    25. 25)
      • 25. Al-Kamali, F., Dessouky, M., Sallam, B., Shawki, F., Abd El-Samie, F.: ‘A new single carrier FDMA system based on the discrete cosine transform’. Proc. Computer Engineering Systems, ICCES 2009, Cairo, 2009, pp. 555560.
    26. 26)
      • 26. Wang, G., Heute, U.: ‘Time-varying MMSE modulated lapped transform and its applications to transform coding for speech and audio signals’, Signal Process., 2002, 82, (9), pp. 12831304.
    27. 27)
      • 27. Wang, G.: ‘The most general time-varying filter bank and time-varying lapped transforms’, IEEE Trans. Signal Process., 2006, 54, (10), pp. 37753789.
    28. 28)
      • 28. 3rd Generation Partnership Project, ‘3GPP TS 36.214 – Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer – Measurements (Release 8),’ November 2007.

Related content

This is a required field
Please enter a valid email address