Double-level binary tree Bayesian compressed sensing for block structured sparse signals

Double-level binary tree Bayesian compressed sensing for block structured sparse signals

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Sparsity is one of the key points in the compressed sensing (CS) theory, which provides a sub-Nyquist sampling paradigm. Nevertheless, apart from sparsity, structures on the sparse patterns such as block structures and tree structures can also be exploited to improve the reconstruction performance and further reduce the sampling rate in CS framework. Based on the fact that the block structure is also sparse for a widely studied block sparse signal, in this study, a double-level binary tree (DBT) hierarchical Bayesian model is proposed under the Bayesian CS (BCS) framework. The authors exploit a recovery algorithm with the proposed DBT structured model, and the block clustering in the proposed algorithm can be achieved fastly and correctly using the Markov Chain Monte Carlo method. The experimental results demonstrate that, compared with most existing CS algorithms for block sparse signals, our proposed DBT-based BCS algorithm can obtain good recovery results with less time consuming.


    1. 1)
      • 1. Candès, E., Wakin, M.B.: ‘An introduction to compressive sampling’, IEEE Signal Process. Mag., 2008, 25, (2), pp. 2130 (doi: 10.1109/MSP.2007.914731).
    2. 2)
      • 2. Donoho, D.L., Elad, M., Temlyakov, V.N.: ‘Stable recovery of sparse overcomplete representations in the presence of noise’, IEEE Trans. Inf. Theory, 2006, 52, (1), pp. 618 (doi: 10.1109/TIT.2005.860430).
    3. 3)
      • 3. Candès, E., Romberg, J., Tao, T.: ‘Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information’, IEEE Trans. Inf. Theory, 2006, 52, (2), pp. 489509 (doi: 10.1109/TIT.2005.862083).
    4. 4)
      • 4. Donoho, D.L.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 12891306 (doi: 10.1109/TIT.2006.871582).
    5. 5)
      • 5. Tsaig, Y., Donoho, D.L.: ‘Extensions of compressed sensing’, Signal Process., 2006, 86, (3), pp. 549571 (doi: 10.1016/j.sigpro.2005.05.029).
    6. 6)
      • 6. Candès, E., Tao, T.: ‘Decoding by linear programming’, IEEE Trans. Inf. Theory, 2005, 51, (12), pp. 42034215 (doi: 10.1109/TIT.2005.858979).
    7. 7)
      • 7. Chen, S.S.B., Donoho, D.L., Saunders, M.A.: ‘Atomic decomposition by basis pursuit’, SIAM J. Sci. Comput., 1998, 20, (1), pp. 3361 (doi: 10.1137/S1064827596304010).
    8. 8)
      • 8. Tropp, J.A., Gilbert, A.C.: ‘Signal recovery from random measurements via orthogonal matching pursuit’, IEEE Trans. Inf. Theory, 2007, 53, (12), pp. 46554666 (doi: 10.1109/TIT.2007.909108).
    9. 9)
      • 9. Needell, D., Vershynin, R.: ‘Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit’, Found. Comput. Math., 2009, 9, (3), pp. 317334 (doi: 10.1007/s10208-008-9031-3).
    10. 10)
      • 10. Needell, D., Tropp, J.A.: ‘CoSaMP: iterative signal recovery from incomplete and inaccurate samples’, Appl. Comput. Harmon. Anal., 2008, 26, (3), pp. 301321 (doi: 10.1016/j.acha.2008.07.002).
    11. 11)
      • 11. Ji, S., Xue, Y., Carin, L.: ‘Bayesian compressive sensing’, IEEE Trans. Signal Process., 2008, 56, (6), pp. 23462356 (doi: 10.1109/TSP.2007.914345).
    12. 12)
      • 12. He, L.H., Carin, L.: ‘Exploiting structure in wavelet based Bayesian compressive sensing’, IEEE Trans. Signal Process., 2009, 57, (9), pp. 34883497 (doi: 10.1109/TSP.2009.2022003).
    13. 13)
      • 13. Baraniuk, R.G., Cevher, V., Duarte, M.: ‘Model-based compressive sensing’, IEEE Trans. Inf. Theory, 2010, 56, (4), pp. 19822001 (doi: 10.1109/TIT.2010.2040894).
    14. 14)
      • 14. Yu, L., Sun, H., Barbot, J.P., Zheng, G.: ‘Bayesian compressive sensing for cluster structured sparse signals’, Signal Process., 2012, 92, (1), pp. 259269 (doi: 10.1016/j.sigpro.2011.07.015).
    15. 15)
      • 15. Peleg, T., Eldar, Y.C., Elad, M.: ‘Exploiting statistical dependencies in sparse representations for signal recovery’, IEEE Trans. Signal Process., 2012, 60, (5), pp. 22862303 (doi: 10.1109/TSP.2012.2188520).
    16. 16)
      • 16. Dobigeon, N., Tourneret, J.Y.: ‘Bayesian orthogonal component analysis for sparse representation’, IEEE Trans. Signal Process., 2010, 58, (5), pp. 26752685 (doi: 10.1109/TSP.2010.2041594).
    17. 17)
      • 17. Chaari, L., Pesquet, J.C., Tourneret, J.Y., Ciuciu, P., Benazza-Benyahia, A.: ‘A hierarchical Bayesian model for frame representation’, IEEE Trans. Signal Process., 2010, 58, (11), pp. 55605571 (doi: 10.1109/TSP.2010.2055562).
    18. 18)
      • 18. Tipping, M.E.: ‘Sparse Bayesian learning and the relevance vector machine’, J. Mach. Learn. Res., 2001, 1, (3), pp. 211244.
    19. 19)
      • 19. Cevher, V., Indyk, P., Hegde, C., Baraniuk, R.G.: ‘Recovery of clustered sparse signals from compressive measurements’. Proc. Int. Conf. Sampling Theory and Applications (SAMPTA), Marseille, France, May 2009, pp. 1822.

Related content

This is a required field
Please enter a valid email address