Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Active impulsive noise control algorithm with post adaptive filter coefficient filtering

Most algorithms for active impulsive noise control employ non-linear transformations to limit the reference and/or error signals and to maintain system stability. From a more direct manner, a new cost function is proposed in this study which is defined as the summation of the squared Euclidean norm of difference between the currently updated filter coefficients vector and all past filter coefficients vector subject to the constraint imposed on the adaptive filter output. A new adaptive algorithm is derived from the cost function and called the filtered weight filtered-x normalised least mean square algorithm because it can be interpreted as a post filter structure which passes the filter coefficients through a first-order infinite impulse response filter. The proposed algorithm is suitable for active control of impulsive noise since it directly limits the dynamic range of the adaptive filter coefficients and prevents heavy fluctuation of the filter coefficients. Simulations compare the performance of the proposed algorithm with the existing algorithms and demonstrate the effectiveness of the proposed algorithm.

References

    1. 1)
      • 14. Ardekani, I.T., Abdulla, W.H.: ‘On the stability of adaptation process in active noise control systems’, J. Acoustical Soc. Am., 2011, 129, (1), pp. 173184 (doi: 10.1121/1.3514375).
    2. 2)
      • 4. Sun, X., Kuo, S.M., Meng, G.: ‘Adaptive algorithm for active control of impulsive noise’, J. Sound Vib., 2006, 291, (1–2), pp. 516522 (doi: 10.1016/j.jsv.2005.06.011).
    3. 3)
      • 8. Ardekani, I.T., Abdulla, W.H.: ‘Theoretical convergence analysis of FxLMS algorithm’, Signal Process., 2010, 90, (12), pp. 30463055 (doi: 10.1016/j.sigpro.2010.05.009).
    4. 4)
      • 13. Ardekani, I.T., Abdulla, W.H.: ‘On the convergence of real-time active noise control systems’, Signal Process., 2011, 91, (5), pp. 12621274 (doi: 10.1016/j.sigpro.2010.12.012).
    5. 5)
      • 11. Haykin, S.: ‘Adaptive filter theory’ (Prentice-Hall, Englewood Cliffs, NJ, 2002, 4th edn.).
    6. 6)
      • 6. Wu, L., He, H., Qiu, X.: ‘An active impulsive noise control algorithm with logarithmic transformation’, IEEE Trans. Audio Speech Lang. Process., 2011, 19, (4), pp. 10411044 (doi: 10.1109/TASL.2010.2061227).
    7. 7)
      • 2. Kuo, S.M., Morgan, D.R.: ‘Active noise control systems: algorithms and DSP implementations’ (Wiley, New York, USA, 1996).
    8. 8)
      • 5. Akhtar, M.T., Mitsuhashi, W.: ‘Improving performance of FxLMS algorithm for active noise control of impulsive noise’, J. Sound Vib., 2009, 327, (3–5), pp. 647656 (doi: 10.1016/j.jsv.2009.07.023).
    9. 9)
      • 10. Ardekani, I.T., Abdulla, W.H.: ‘Filtered weight FxLMS adaptation algorithm: analysis, design and implementation’, Int. J. Adapt. Control Signal Process., 2011, 25, pp. 10231037 (doi: 10.1002/acs.1257).
    10. 10)
      • 7. Bergamasco, M., Rossa, F.B., Piroddi, L.: ‘Active noise control with on-line estimation of non-Gaussian noise characteristics’, J. Sound Vib., 2012, 331, pp. 2740 (doi: 10.1016/j.jsv.2011.08.025).
    11. 11)
      • 12. Brüel, , Kjær, : ‘Product Data-Head and Torso Simulator-Type 4128C’, Handset Positioner for HATS – Type 4606: 4 [M]. [S.l.]: Brüel & Kjær, 2010.
    12. 12)
      • 3. Leahy, R., Zhou, Z., Hsu, Y.C.: ‘Adaptive filtering of stable processes for active attenuation of impulsive noise’. Proc. IEEE ICASSP, Detroit, USA, May 1995, pp. 29832986.
    13. 13)
      • 1. Elliott, S.J.: ‘Signal processing for active control’ (Academic Press, London, UK, 2001).
    14. 14)
      • 15. Ardekani, I.T., Abdulla, W.H.: ‘Dominant pole localization of FxLMS adaptation process in active noise control’. Proc. 2011 Asia-Pacific Signal and Information Processing Association (APSIPA), China, 2011.
    15. 15)
      • 9. Das, D.P., Panda, G., Kuo, S.M.: ‘New block filtered-x LMS algorithms for active noise control systems’, IET Signal Process., 2007, 1, (2), pp. 7381 (doi: 10.1049/iet-spr:20060220).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2012.0164
Loading

Related content

content/journals/10.1049/iet-spr.2012.0164
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address