http://iet.metastore.ingenta.com
1887

Spectral efficient compressive transmission framework for wireless communication systems

Spectral efficient compressive transmission framework for wireless communication systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Increasing demand of high-speed data rate is leading to a challenging task to provide services to the users within exponentially growing market for wireless multimedia services. Subsequently, the available radio resources are becoming scarce because of different factors such as spectrum segmentation and dedicated frequency allocation to existing wireless standards. Exploring new techniques for enhancing the spectral efficiency in wireless communication has been an important research challenge. In this study, the enhancement of spectral efficiency of wireless communication systems is considered. A framework is proposed to implement the concept of compressive sampling (CS) for compressing the natural random signals. The performance of proposed framework is evaluated in the context of multiple input multiple output orthogonal frequency division multiplexing system. Simulation-based results show that 25% of resources can be saved by marginal trade-off with the quality of service (QoS) requirement applying CS to the natural random signals. Furthermore, it can be claimed that this QoS trade-off can be optimised with dynamic selection of random measurement matrices.

References

    1. 1)
      • 1. Candes, E.J., Wakin, M.: ‘An introduction to compressive sampling’, IEEE Signal Process. Mag., 2008, 25, (2), pp. 2130 (doi: 10.1109/MSP.2007.914731).
    2. 2)
      • 2. Berger, C.R., Wang, Z., Huang, J., Zhou, S.: ‘Application of compressive sensing to sparse channel estimation’, IEEE Commun. Mag., 2010, 48, (11), pp. 164174 (doi: 10.1109/MCOM.2010.5621984).
    3. 3)
      • 3. Peng, Y., Yang, X., Zhang, X., Wang, W., Wu, B.: ‘Compressed MIMO-OFDM channel estimation’. Proc. 12th IEEE Int. Conf. Communication Technology, November 2010, pp. 12911294.
    4. 4)
      • 4. Baraniuk, R., Steeghs, P.: ‘Compressive radar imaging’. Proc. IEEE Radar Conf., April 2007, pp. 128133.
    5. 5)
      • 5. Tian, Z., Giannakis, G.B.: ‘Compressed sensing for wideband cognitive radios’. IEEE Int. Conf. Acoustics, Speech and Signal Processing, April 2007, vol. 4, pp. 13571360.
    6. 6)
      • 6. Candes, E.J.: ‘Compressive sampling’. Proc. Int. Congress of Mathematicians, 2006, vol. 3, pp. 14331452.
    7. 7)
      • 7. Romberg, J., Wakin, M.: ‘Compressed sensing: a tutorial’. IEEE Statistical Signal Processing Workshop, Wisconsin, 2007.
    8. 8)
      • 8. Lamoureux, M.: ‘Tutorial on compressive sampling’. University of Calgary, Calgary, available online, website: http://www.cspg.org/conventions/.
    9. 9)
      • 9. Ciancio, A., Pattem, S., Ortega, A., Krishnamachari, B.: ‘Energy-efficient data representation and routing for wireless sensor networks based on a distributed wavelet compression algorithm’. Proc. Int. Conf. Information Processing in Sensor Networks, 2006, pp. 309316.
    10. 10)
      • 10. Boufounos, P.T., Baraniuk, R.G.: ‘1-Bit compressive sensing’. Proc. 42nd Annual Conf. Information Sciences and Systems, March 2008.
    11. 11)
      • 11. Mishali, M., Eldar, Y.C.: ‘From theory to practice: sub-Nyquist sampling of sparse wideband analog signals’, IEEE J. Sel. Top. Signal Process., 2010, 4, (2), pp. 29412946 (doi: 10.1109/JSTSP.2010.2042414).
    12. 12)
      • 12. Shihao, J., Ya, X., Carin, L.: ‘Bayesian compressive sensing’, IEEE Trans. Signal Process., 2008, 56, (6), pp. 23462356 (doi: 10.1109/TSP.2007.914345).
    13. 13)
      • 13. Kyriakides, K.: ‘Radar tracking performance when sensing and processing compressive measurements’. 13th Conf. Information Fusion, July 2010.
    14. 14)
      • 14. Li, W., Preisig, J.C.: ‘Estimation of rapidly time-varying sparse channels’, IEEE J. Ocean. Eng., 2007, 32, (10), pp. 927939 (doi: 10.1109/JOE.2007.906409).
    15. 15)
      • 15. Do, T.T., Gan, L., Nguyen, N.H., Tran, T.D.: ‘Fast and efficient compressive sensing using structurally random matrices’, IEEE Trans. Signal Process., 2012, 60, (1), pp. 139154 (doi: 10.1109/TSP.2011.2170977).
    16. 16)
      • 16. Tropp, J., Gilbert, A.: ‘Signal recovery from random measurements via orthogonal matching pursuit’, IEEE Trans. Inf. Theory, 2007, 53, (12), pp. 46554666 (doi: 10.1109/TIT.2007.909108).
    17. 17)
      • 17. Wang, Z., Lee, I.: ‘Sorted random matrix for orthogonal matching pursuit’. Proc. Int. Conf. Digital Image Computing: Techniques and Applications, December 2010, pp. 116120.
    18. 18)
      • 18. Dai, W., Milenkovic, O.: ‘Subspace pursuit for compressive sensing signal reconstruction’, IEEE Trans. Inf. Theory, 2009, 55, (5), pp. 22302249 (doi: 10.1109/TIT.2009.2016006).
    19. 19)
      • 19. Baraniuk, R.G., Cevher, V., Duarte, M.F., Hegde, C.: ‘Model-based compressive sensing’, IEEE Trans. Inf. Theory, 2010, 56, (4), pp. 19822001 (doi: 10.1109/TIT.2010.2040894).
    20. 20)
      • 20. Prokais, J.G.: ‘Digital communication’ (McGraw-Hill, 1995, 3rd edn.).
    21. 21)
      • 21. Baraniuk, R.: ‘Compressive sensing’, IEEE Signal Process. Mag., 2007, 24, (4), pp. 118121 (doi: 10.1109/MSP.2007.4286571).
    22. 22)
      • 22. Paulraj, A.J., Gore, D.A., Nabar, R.U., Bolcskei, H.: ‘An overview of MIMO communications – a key to gigabit wireless’, Proc. IEEE, 2004, 92, (2), pp. 198218 (doi: 10.1109/JPROC.2003.821915).
    23. 23)
      • 23. Bingham, J.A.C.: ‘Multicarrier modulation for data transmission: an idea whose time has come’, IEEE Commun. Mag., 1999, 28, (5), pp. 510 (doi: 10.1109/35.54342).
    24. 24)
      • 24. Bolcskei, H.: ‘MIMO-OFDM wireless systems: basics, perspectives, and challenges’, IEEE Wirel. Commun., 2006, 13, (4), pp. 3137 (doi: 10.1109/MWC.2006.1678163).
    25. 25)
      • 25. Adeane, J., Rodrigues, M.R.D., Wassell, I.J.: ‘Lattice-reduction-aided detection for MIMO-OFDM-CDM communication systems’, IET Commun., 2007, 1, (3), pp. 526531 (doi: 10.1049/iet-com:20050640).
    26. 26)
      • 26. Romberg, J.: ‘Imaging via compressive sampling’, IEEE Signal Process. Mag., 2008, 25, (2), pp. 1420 (doi: 10.1109/MSP.2007.914729).
    27. 27)
      • 27. Donoho, D.L.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, pp. 12891306 (doi: 10.1109/TIT.2006.871582).
    28. 28)
      • 28. Gilbert, M., Strauss, J., Tropp, A., Vershynin, R.: ‘Sublinear approximation of signals’, available online, website: http://www.math.lsa.umich.edu/, April2010.
    29. 29)
      • 29. Kay, S.M.: ‘Fundamentals of statistical signal processing: detection theory’ (Prentice-Hall PTR), 1998, vol. 2, pp. 60120.
    30. 30)
      • 30. DeVore, M.D.: ‘Estimates of error probability for complex gaussian channels with generalized likelihood ratio detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (10), pp. 15801591 (doi: 10.1109/TPAMI.2005.198).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2012.0075
Loading

Related content

content/journals/10.1049/iet-spr.2012.0075
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address