Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Low-complexity equalisation of doubly selective channels for multiple-input–multiple-output transmission systems

Equalisation of multiple-input–multiple-output doubly selective channels is studied and a technique for low-complexity equalisation of doubly selective channels is proposed. This paper studies low-complexity techniques for linear equalisation as well as two different architectures for non-linear equalisation. The first non-linear architecture only involves feedback of decisions on previously detected symbols to cancel intersymbol interference. The second non-linear architecture separates the interference into intersymbol interference between successive transmissions and co-channel interference (CCI) between the multiple transmit streams. The ISI is then handled with a combination of both interference suppression via filtering and interference cancellation via decision feedback. However, the CCI is handled by an ordered successive interference cancellation mechanism. Both receiver structures involve significant design complexity because of the channel time variations. Therefore low-complexity implementations are proposed. The time-varying nature of the channel requires time-varying equalisers. The proposed low-complexity scheme thus involves designing equalisers at uniformly spaced intervals within the transmit block and then interpolating to obtain the time-varying equalisers over the remainder of the block. The proposed low-complexity approaches to equalisation are analysed in terms of both performance and complexity.

References

    1. 1)
      • 21. Giannakis, G.B., Tepedelenlioglu, C.: ‘Basis expansion models and diversity techniques for blind equalization of time varying channels’, Proc. IEEE, 1998, 86, pp. 19691986.
    2. 2)
      • 22. Barhumi, I., Moonen, M.: ‘Time-varying FIR decision feedback equalization for MIMO transmission over doubly selective channels’. GLOBECOM, December 2009.
    3. 3)
      • 17. Tugnait, J., He, S., Kim, H.: ‘Doubly selective channel estimation using exponential basis models and subblock tracking’, IEEE Trans. Signal Process., 2010, 58, pp. 12751289.
    4. 4)
      • 9. Schniter, P.: ‘Low-complexity equalization of OFDM in doubly selective channels’, IEEE Trans. Signal Process., 2004, 52, pp. 10021011.
    5. 5)
      • 5. Barhumi, I., Leus, G., Moonen, M.: ‘Time varying FIR equalization of doubly selective channels’, IEEE Trans. Wirel. Commun., 2005, 4, pp. 202214.
    6. 6)
      • 2. Benvenuto, N., Boccardi, F., Carnavale, G.: ‘Frequency domain realization of space time receivers in dispersive wireless channels’, IEEE Trans. Signal Process., 2007, 55, pp. 313326.
    7. 7)
      • 21. Giannakis, G.B., Tepedelenlioglu, C.: ‘Basis expansion models and diversity techniques for blind equalization of time varying channels’, Proc. IEEE, 1998, 86, pp. 19691986.
    8. 8)
      • 8. Cai, X., Giannakis, G.B.: ‘Bounding performance and suppressing intercarrier interference in wireless mobile OFDM’, IEEE Trans. Commun., 2003, 51, pp. 20472056.
    9. 9)
      • 16. Jakes, W.C.: ‘Microwave mobile communications’ (Wiley, 1974).
    10. 10)
      • 15. Ait-Idir, T., Saoudi, S.: ‘Turbo packet combining strategies for the MIMO-ISI ARQ channel’, IEEE Trans. Commun., 2009.
    11. 11)
      • 20. Tugnait, J.K., He, S.: ‘Multiuser/MIMO doubly selective fading channel estimation using superimposed training and Slepian sequences’, IEEE Trans. Veh. Technol., 2010, 59, pp. 13411354.
    12. 12)
      • 19. Ma, X., Giannakis, G.B., Ohno, S.: ‘Optimal training for block transmissions over doubly selective wireless fading channels’, IEEE Trans. Signal Process., 2003, 51, pp. 13511366.
    13. 13)
      • 13. Fang, K., Rugini, L., Leus, G.: ‘Low complexity block turbo equalization for OFDM systems in time varying channels’, IEEE Trans. Signal Process., 2008, 56, pp. 55555566.
    14. 14)
      • 24. Wubben, D., Bohnke, R., Kuhn, V., Kammeyer, K.D.: ‘MMSE Extension of V-BLAST based on sorted QR decomposition’. Proc. IEEE VTC, 2003, pp. 508512.
    15. 15)
      • 18. Schniter, P.: ‘Low complexity estimation of doubly selective channels’. Proc. IEEE. Workshop on Advances in Wireless Commun., June 2003.
    16. 16)
      • 4. Kalbasi, R., Falconer, D., Banihashemi, A.H., Dinis, R.: ‘A comparison of frequency domain block MIMO transmission systems’, IEEE Trans. Veh. Technol., 2009, 58, pp. 165175.
    17. 17)
      • 12. He, J., Gu, G., Wu, Z.: ‘MMSE interference suppression in MIMO frequency selective and time varying fading channels’, IEEE Trans. Signal Process., 2008, 56, pp. 36383651.
    18. 18)
      • 23. Lozano, A., Papadias, C.: ‘Layered space time receivers for frequency selective wireless channels’, IEEE Trans. Commun., 2002, 50, pp. 6573.
    19. 19)
      • 6. Rugini, L., Banelli, P., Leus, G.: ‘Simple equalization of OFDM over time varying channels’, IEEE Commun. Lett., 2005, 9, pp. 619621.
    20. 20)
      • 14. Ait-Idir, T., Saudi, S., Naja, N.: ‘Space time turbo equalization with successive interference cancelation for frequency selective MIMO channels’, IEEE Trans. Veh. Technol., 2008, 57, pp. 27662778.
    21. 21)
      • 1. Zhu, Y., Lataief, K.B.: ‘Single carrier frequency domain equalization with time domain noise prediction for wideband wireless communications’, IEEE Trans. Wirel. Commun., 2006, 5, pp. 35483557.
    22. 22)
      • 26. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, 2004).
    23. 23)
      • 3. Benvenuto, N., Dinis, R., Falconer, D., Tomasin, S.: ‘Single carrier modulation with nonlinear frequency domain equalization: an idea whose time has come – again’, Proc. IEEE, 2010, 98, pp. 6996.
    24. 24)
      • 10. Barhumi, I., Leus, G., Moonen, M.: ‘Estimation and direct equalization of doubly selective channels’, EURASIP J. Adv. Signal Process., 2006, article ID 62831.
    25. 25)
      • 11. Barhumi, I., Moonen, M.: ‘Time varying FIR equalization for MIMO transmission over doubly selective channels’, EURASIP J. Adv. Signal Process., 2011.
    26. 26)
      • 7. Rugini, L., Banelli, P., Leus, G.: ‘Low complexity banded equalizers for OFDM systems in Doppler spread channels’, EURASIP J. Appl. Signal Process., 2006, article ID 67404.
    27. 27)
      • 25. Golub, G., Loan, C.V.: ‘Matrix computations’ (John Hopkins University Press, 1989).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2012.0073
Loading

Related content

content/journals/10.1049/iet-spr.2012.0073
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address