http://iet.metastore.ingenta.com
1887

Joint space-time–frequency method based on fractional Fourier transform to estimate moving target parameters for multistatic synthetic aperture radar

Joint space-time–frequency method based on fractional Fourier transform to estimate moving target parameters for multistatic synthetic aperture radar

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In practice, the configuration of spaceborne multistatic synthetic aperture radar (MSAR) is generally three-dimensional (3D) stereo geometry, under which condition most current algorithms of motion parameter estimation are invalid. In this study, a joint space-time–frequency method is presented to estimate motion parameters of ground moving target for MSAR of 3D geometry. First, the array expression for azimuth echo named extended space-time model (ESTM) is derived; then on the basis of ESTM, a spatial time–frequency distribution method based on fractional Fourier transform algorithm is derived; finally the performance of the presented method is analysed, and the advantages comparing with velocity synthetic aperture radar are discussed via some computer simulations. The work provides a feasible method of multi-channel processing for the 3D MSAR.

References

    1. 1)
      • 1. Krieger, G., Moreira, A.: ‘Spaceborne bi- and multistatic SAR: potential and challenges’, IEE Proc., Radar Sonar Navig., 2006, 153, pp. 184197.
    2. 2)
      • 2. Zhang, Y.H., Hajjari, A., Kyungjung, K., Himed, B.: ‘A dual-threshold ATI-SAR approach for detecting slow moving targets’. IEEE Int. Radar Conf., 2005, pp. 295299.
    3. 3)
      • 3. Moreira, A., Krieger, G., Fiedler, H., et al.: ‘Advanced interferometric SAR techniques with TanDEM-X’. IEEE Radar Conf., 2008, pp. 15.
    4. 4)
      • 4. Ender, J.: ‘Signal processing for multi-channel SAR applied to experimental SAR system AER’. Int. Radar Conf. RADAR'94, Paris, 1994, pp. 220225.
    5. 5)
      • 5. Friedlander, B., Porat, B., VSAR: ‘A high resolution radar system for detection of moving targets’, IEE Proc., Radar Sonar Navig., 1997, 144, (4), pp. 205218.
    6. 6)
      • 6. Krieger, G., Fiedler, H., Mittermayer, J., Papathanassiou, K., Moreira, A.: ‘Analysis of multistatic configurations for spaceborne SAR interferometry’, IEE Proc., Radar Sonar Navig., 2003, 150, (3), pp. 8796.
    7. 7)
      • 7. Kang, X.Y., Jiang, B.T., Zhang, Y.H., Yun, R.S.: ‘Performance analysis of STAP for spaceborne sparse array in the presence of amplitude and phase errors’. Proc. Seventh European Conf. on Synthetic Aperture Radar (EUSAR), 2008, pp. 14.
    8. 8)
      • 8. Maori, D.C., Ender, J.H.G.: ‘Performance analysis of multistatic configurations for spaceborne GMTI based on the auxiliary beam approach’, IEE Proc., Radar Sonar Navig., 2006, 153, (2), pp. 96103.
    9. 9)
      • 9. Raney, R.K.: ‘Synthetic aperture imaging radar and moving targets’, IEEE Trans. Aerosp. Electron. Syst., 1971, 7, (3), pp. 499505.
    10. 10)
      • 10. Li, G., Xu, J., Peng, Y.N., Xia, X.G.: ‘Location and imaging of moving targets using nonuniform linear antenna array SAR’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (3), pp. 12141220.
    11. 11)
      • 11. Sun, H.D., Zhang, L.Z., Jin, X.S.: ‘Parameter estimations based on DPCA-FrFT algorithm for three-channel SAR-GMTI system’. Int. Conf. Intelligent Computation Technology and Automation (ICICTA), 2011, 2, pp. 640644.
    12. 12)
      • 12. Barbarossa, S., Farina, A.: ‘Space-time–frequency processing of synthetic aperture radar signals’, IEEE Trans. Aerosp. Electron. Syst., 1994, 30, (2), pp. 341358.
    13. 13)
      • 13. Prati, C., Rocca, F.: ‘Improving slant-range resolution with multiple SAR surveys’, IEEE Trans. Aerosp. Electron. Syst., 1993, 29, (1), pp. 135144.
    14. 14)
      • 14. Sun, H.-B., Liu, G.-S., Gu, H., Su, W.-M.: ‘Application of the fractional Fourier transform to moving target detection in airborne SAR’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (4), pp. 14161424.
    15. 15)
      • 15. Tao, R., Ping, X.J., Zhao, X.H., Wang, Y.: ‘Detection and estimation of moving targets based on fractional Fourier transform’. Proc. Sixth Int. Conf. on Signal Processing, 2002, 1, pp. 102105.
    16. 16)
      • 16. Krim, H., Viberg, M.: ‘Two decades of array signal processing research: the parametric approach’, IEEE Signal Process. Mag., 1996, 13, (4), pp. 6794.
    17. 17)
      • 17. Wu, H.Z., Tao, R.: ‘Broadband beamforming of LFM signal based on fractional Fourier transform’. Proc. Ninth Int. Conf. on Signal Processing, ICSP, 2008, pp. 296298.
    18. 18)
      • 18. Zhu, Z.B., Tang, Z.Y., Jiang, X.Z.: ‘Imaging algorithm of bistatic SAR with parallel track’, J. Electron. Inf. Technol., 2007, 29, (11), pp. 27022705, Chinese.
    19. 19)
      • 19. Belouchrani, A., Amin, M.G.: ‘Blind source separation based on time–frequency signal representations’, IEEE Trans. Signal Process., 1998, 46, (11), pp. 28882897.
    20. 20)
      • 20. Pei, S.C., Ding, J.J.: ‘Closed-form discrete fractional and affine Fourier transform’, IEEE Trans. Signal Process., 2000, 48, (5), pp. 13381353.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2011.0427
Loading

Related content

content/journals/10.1049/iet-spr.2011.0427
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address