Minimum mean-square error transceiver optimisation for downlink multiuser multiple-input-multiple-output network with multiple linear transmit covariance constraints

Minimum mean-square error transceiver optimisation for downlink multiuser multiple-input-multiple-output network with multiple linear transmit covariance constraints

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors propose two algorithms to solve sum mean-square error (MSE) minimisation and mixed quality of service (QoS) requirement problems for a multiuser multiple-input-multiple-output system with multiple linear transmit covariance constraints. These original problems in the downlink are complicated because of the coupled structure of the transmitter filters. To overcome this issue, MSE duality proposed in the literature is extended at different levels for a general linear transmit covariance constraint. Exploiting the general sum-MSE duality and subgradient method, the sum-MSE minimisation algorithm is proposed first for multiple linear transmit covariance constraints. Secondly, a novel algorithm is proposed to solve mixed QoS requirement problem, where multiple linear transmit covariance constraints are incorporated in the design of the receiver filters in the equivalent multiple access channel. This algorithm is developed based on stream-wise MSE duality and alternating optimisation framework . Simulation results have been provided to validate the convergence of the proposed algorithms. In addition, the proposed sum-MSE minimisation algorithm with per-antenna power constraints outperforms the existing algorithm in terms of achieved sum-MSE and power consumption at each transmit antenna.


    1. 1)
      • 1. Hunger, R., Joham, M., Utschick, W.: ‘On the MSE-duality of the broadcast channel and the multiple access channel’, IEEE Trans. Signal Process., 2009, 57, (2), pp. 698713.
    2. 2)
      • 2. Zhang, L., Zhang, R., Liang, Y.C., Xin, Y., Poor, H.V.: ‘On Gaussian MIMO BC-MAC duality with multiple transmit covariance constraints’, IEEE Trans. Inf. Theory, 2012, 58, (4), pp. 20642078.
    3. 3)
      • 3. Shi, S., Schubert, M., Boche, H.: ‘Capacity balancing for multiuser MIMO systems’. Proc. IEEE ICASSP, Honolulu, HI, April 2007, vol. 3, pp. III-397III-400.
    4. 4)
      • 4. Costa, M.: ‘Writing on dirty paper’, IEEE Trans. Inf. Theory, 1983, 29, pp. 439441.
    5. 5)
      • 5. Weingarten, H., Steinberg, Y., Shamai, S.: ‘The capacity region of the Gaussian multiple-input multiple-output broadcast channel’, IEEE Trans. Inf. Theory, 2006, 52, (9), pp. 39363964.
    6. 6)
      • 6. Viswanath, P., Anantharam, V., Tse, D.: ‘Optimal sequences, power control and capacity of synchronous CDMA systems with linear MMSE multiuser receivers’, IEEE Trans. Inf. Theory, 1999, 45, pp. 19681983.
    7. 7)
      • 7. Goldsmith, A.: ‘Wireless communications’ (Cambridge University Press, 2005).
    8. 8)
      • 8. Jindal, N., Rhee, W., Viswanath, S., Jafar, A., Goldsmith, A.: ‘Sum power iterative water-filling for multi-antenna Gaussian broadcast channels’, IEEE Trans. Inf. Theory, 2005, 51, (4), pp. 15701580.
    9. 9)
      • 9. Shi, S., Schubert, M., Boche, H.: ‘Downlink MMSE transceiver optimization for multiuser MIMO systems: duality and sum-MSE minimization’, IEEE Trans. Signal Process., 2007, 55, (11), pp. 54365446.
    10. 10)
      • 10. Schubert, M., Boche, H.: ‘Solution of the multiuser downlink beamforming problem with individual SINR constraints’, IEEE Trans. Veh. Technol., 2004, 53, (1), pp. 1828.
    11. 11)
      • 11. Zheng, G., Wong, K.K., Ng, T.S.: ‘Throughput maximization in linear multiuser MIMO-OFDM downlink systems’, IEEE Trans. Veh. Technol., 2008, 57, (3), pp. 19931998.
    12. 12)
      • 12. Wang, T., de Lamare, R., Schmeink, A.: ‘Joint receiver design and power allocation strategies for multihop wireless sensor networks’. Proc. Eighth Int. Symp. on Wireless Communication Systems (ISWCS'11), November 2011, pp. 8690.
    13. 13)
      • 13. Peng, T., de Lamare, R., Schmeink, A.: ‘Joint power allocation and receiver design for distributed space-time coded cooperative MIMO systems’. Proc. Eighth Int. Symp. on Wireless Communication Systems (ISWCS'11), November 2011, pp. 427431.
    14. 14)
      • 14. Wang, J., Bengtsson, M.: ‘Simplified alternating optimization for robust MMSE MIMO transceiver’. Proc. Int. Conf. on Wireless Communications and Signal Processing (WCSP'11), November 2011, pp. 15.
    15. 15)
      • 15. Tseng, F.-S., Chang, M.-Y., Wu, W.-R.: ‘Robust MMSE transceiver design in amplify-and-forward MIMO relay system with Tomlinson-Harashima source precoding’. Proc. IEEE Wireless Communications and Networking Conf. (WCNC'12), April 2012, pp. 748752.
    16. 16)
      • 16. Shi, S., Schubert, M.: ‘MMSE transmit optimization for multiuser multi-antenna systems’. Proc. IEEE ICASSP, Philadelphia, PA, USA, March 2005, vol. 3, pp. III-409III-412.
    17. 17)
      • 17. Cumanan, K., Musavian, L., Lambotharan, S., Gershman, A.B.: ‘SINR balancing technique for downlink beamforming in cognitive radio networks’, IEEE Signal Process. Lett., 2010, 17, (2), pp. 133136.
    18. 18)
      • 18. Cumanan, K., Krishna, R., Musavian, L., Lambotharan, S.: ‘Joint beamforming and user maximization techniques for cognitive radio networks based on branch and bound method’, IEEE Trans. Wirel. Commun., 2010, 9, (10), pp. 30823092.
    19. 19)
      • 19. Musavian, L., Aissa, S.: ‘Outage-constrained capacity of spectrum-sharing channels in fading environments’, IET Commun., 2008, 2, (6), pp. 724732.
    20. 20)
      • 20. Musavian, L., Aissa, S.: ‘Capacity and power allocation for spectrum-sharing communications in fading channels’, IEEE Trans. Wirel. Commun., 2009, 8, (1), pp. 148156.
    21. 21)
      • 21. Cumanan, K., Tang, J., Lambotharan, S.: ‘Rate balancing based linear transceiver design for multiuser MIMO system with multiple linear transmit covariance constraints’. Proc. IEEE ICC 2011, Kyoto, Japan, June 2011, pp. 15.
    22. 22)
      • 22. Shi, S., Schubert, M., Boche, H.: ‘Per-antenna power constrained rate optimization for multiuser MIMO systems’. Proc. Int. ITG Workshop on Smart Antennas, February 2008, pp. 270277.

Related content

This is a required field
Please enter a valid email address