Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Compressive sensing via sparse difference and fractal and entropy recognition for mass spectrometry sensing data

This study presents a novel compressive sensing (CS) framework to solve the high dimensional mass spectrometry (MS) signal processing in Bioinformatics. As a hot research topic, CS has attracted a great deal of attention in many fields. In theory, high sparsity is one precondition for any CS framework. However, in Bioinformatics, one application bottleneck is that only a few MS data can be considered as sparse. So sparse representation (SR) become necessary. However, this will create a new problem that the SR computation cost will be too huge to MS signal because of its high data dimensionality (usually tens of thousands or more). Therefore the authors propose theconcept ofsparse difference (SD) to realise a new CS framework. Firstly, it canacquire the prior MS information through fractal and entropy recognition. Secondly, the original signal can be perfectly recovered by SD based on the previous recognition result. The feasibility and validity of this CS framework isproved by experiments.

References

    1. 1)
      • 19. Sheikh, M.A., Milenkovic, O., Baraniuk, R.G.: ‘Designing compressive sensing DNA microarrays’. Proc. IEEE CAMSAP 2007, St. Thomas, U.S. Virgin Islands, December 2007, pp. 141144.
    2. 2)
      • 27. Tang, Y.Y., Tao, Y., Lam, E.C.M.: ‘New method for feature extraction based on fractal behavior’, Pattern Recogn., 2002, 35, (5), pp. 10711081 (doi: 10.1016/S0031-3203(01)00095-4).
    3. 3)
      • 1. Borges, N.C., Astigarraga, R.B., Sverdloff, C.E., et al: ‘A novel and sensitive method for ethinylestradiol quantification in human plasma by high-performance liquid chromatography coupled to atmospheric pressure photoionization (APPI) tandem mass spectrometry: application to a comparative pharmacokinetics study’, J. Chromatogr. B, 2009, 887, pp. 36013609 (doi: 10.1016/j.jchromb.2009.08.048).
    4. 4)
      • 29. Yildiz, A., Akin, M., Poyraz, M., Kirbas, G.: ‘Application of adaptive neuro-fuzzy inference system for vigilance level estimation by using wavelet-entropy feature extraction’, Expert Syst. Appl., 2009, 36, pp. 73907399 (doi: 10.1016/j.eswa.2008.09.003).
    5. 5)
      • 15. Wojtaszczyk, P.: ‘Stability and instance optimality for Gaussian measurements in compressed sensing’, Found. Comput. Math., 2010, 10, (1), pp. 113 (doi: 10.1007/s10208-009-9046-4).
    6. 6)
      • 2. Zhou, Q., Gallo, J.M.: ‘Quantification of Sunitinib in mouse plasma, brain tumor and normal brain using liquid chromatography–electrospray ionization-tandem mass spectrometry and pharmacokinetic application’, J. Pharm. Biomed., 2010, 51, pp. 958964 (doi: 10.1016/j.jpba.2009.10.006).
    7. 7)
      • 24. Hoyle, D.C.: ‘Automatic PCA dimension selection for high dimensional data and small sample sizes’, J. Mach. Learn. Res., 2008, 9, pp. 27332759.
    8. 8)
      • 18. Dai, W., Sheikh, M.A., Milenkovic, O., Baraniuk, R.G.: ‘Compressed sensing DNA microarrays’, EURASIP J. Bioinf. S. Bio., 2009, 2009, pp. 112doi:10.1155/2009/162824  (doi: 10.1155/2009/162824).
    9. 9)
      • 11. Chen, S.S., Donoho, D.L., Saunders, M.A.: ‘Atomic decomposition by basis pursuit’, SIAM J. Sci. Comput., 1998, 20, (1), pp. 3361 (doi: 10.1137/S1064827596304010).
    10. 10)
      • 17. Arthur, P.L., Philipos, C.L.: ‘Voiced/unvoiced speech discrimination in noise using Gabor atomic decomposition’. Proc. IEEE ICASSP 2003, HongKong, 2003, pp. 820828.
    11. 11)
      • 16. Peyré, G.: ‘Best basis compressed sensing’, IEEE Trans. Signal Process., 2010, 58, (5), pp. 26132622 (doi: 10.1109/TSP.2010.2042490).
    12. 12)
      • 26. Wang, M., Perera, A., Gutierrez-Osuna, R.: ‘Principal discriminants analysis for small-sample-size problems application to chemical sensing’. Proc. IEEE Sensors, Vienna, October 2004, pp. 591594.
    13. 13)
      • 10. Mallat, S., Zhang, Z.: ‘Matching pursuits with time-frequency dictionaries’, IEEE Trans. Signal Process., 1993, 41, (12), pp. 33973415 (doi: 10.1109/78.258082).
    14. 14)
      • 22. Arcene Data Set, 29 February 2008. Available at: http://www.archive.ics.uci.edu/ml/datasets/Arcene.
    15. 15)
      • 9. Donoho, D.L.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 12891306 (doi: 10.1109/TIT.2006.871582).
    16. 16)
      • 14. Do, T.T., Tran, T.D., Gan, L.: ‘Fast compressive sampling with structurally random matrices’. Proc. IEEE ICASSP 2008, Las Vegas, Nevada, USA, March 2008, pp. 33693372.
    17. 17)
      • 25. Jung, S., Marron, J.S.: ‘PCA consistency in high dimension, low sample size context’, Ann. Stat., 2009, 37, pp. 41044130 (doi: 10.1214/09-AOS709).
    18. 18)
      • 4. Pan, Y., Brown, L.S., Konermann, L.: ‘Hydrogen/deuterium exchange mass spectrometry and optical spectroscopy as complementary tools for studying the structure and dynamics of a membrane protein’, Int. J. Mass Spectrom., 2011, 302, pp. 311 (doi: 10.1016/j.ijms.2010.04.011).
    19. 19)
      • 23. Ovarian Dataset 8-7-02, 8 July 2002. Available at: http://www.home.ccr.cancer.gov/ncifdaproteomics/ppatterns.-asp.
    20. 20)
      • 13. Candès, E.: ‘The restricted isometry property and its implications for compressed sensing’, C. R. Math. Acad. Sci., 2008, 346, (9–10), pp. 589592 (doi: 10.1016/j.crma.2008.03.014).
    21. 21)
      • 5. Faull, P.A., Florance, H.V., Schmidt, C.O., et al: ‘Utilising ion mobility-mass spectrometry to interrogate macromolecules: factor H complement control protein modules 10–15 and 19–20 and the DNA-binding core domain of tumour suppressor p53’, Int. J. Mass Spectrom., 2010, 298, pp. 99110 (doi: 10.1016/j.ijms.2010.01.007).
    22. 22)
      • 6. Schenauer, M.R., Leary, J.A.: ‘An ion mobility–mass spectrometry investigation of monocyte chemoattractant protein-1’, Int. J. Mass Spectrom., 2009, 287, pp. 7076 (doi: 10.1016/j.ijms.2009.02.023).
    23. 23)
      • 28. Lee, W.L., Hsieh, K.S.: ‘A robust algorithm for the fractal dimension of images and its applications to the classification of natural images and ultrasonic liver images’, Signal Process., 2010, 90, (6), pp. 18941904 (doi: 10.1016/j.sigpro.2009.12.010).
    24. 24)
      • 21. Mohtashemi, M., Smith, H., Walburger, D., Sutton, F., Diggans, J.: ‘Sparse sensing DNA microarray-based biosensor: is it feasible?Proc. IEEE SAS 2010, Limerick, Ireland, February 2010, pp. 127130.
    25. 25)
      • 20. Sheikh, M.A., Sarvotham, S., Milenkovic, O., Baraniuk, R.G.: ‘DNA array decoding from nonlinear measurements by Beleif propagation’. Proc. IEEE SSP 2007, Madison, Wisconsin, USA, August 2007, pp. 215219.
    26. 26)
      • 7. Candès, E., Romberg, J., Tao, T.: ‘Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information’, IEEE Trans. Inf. Theory, 2006, 52, (2), pp. 489509 (doi: 10.1109/TIT.2005.862083).
    27. 27)
      • 3. César, I.C., Ribeiro, J.A., Teixeira, L., et al: ‘Liquid chromatography–tandem mass spectrometry for the simultaneous quantitation of artemether and lumefantrine in human plasma: application for a pharmacokinetic study’, J. Pharm. Biomed., 2011, 54, pp. 114120 (doi: 10.1016/j.jpba.2010.07.027).
    28. 28)
      • 12. Berinde, R., Indyk, P.: ‘Sparse recovery using sparse random matrices’, Proc. IEEE, 2010, 98, (6), pp. 937947 (doi: 10.1109/JPROC.2010.2045092).
    29. 29)
      • 30. Lee, M.Y., Yang, C.S.: ‘Entropy-based feature extraction and decision tree induction for breast cancer diagnosis with standardized thermograph images’, Comput. Methods Prog. Biol., 2010, 100, pp. 269282 (doi: 10.1016/j.cmpb.2010.04.014).
    30. 30)
      • 8. Candès, E., Romberg, J., Tao, T.: ‘Near optimal signal recovery from random projections: universal encoding strategies?’, IEEE Trans. Inf. Theory, 2006, 52, (12), pp. 54065425 (doi: 10.1109/TIT.2006.885507).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2011.0219
Loading

Related content

content/journals/10.1049/iet-spr.2011.0219
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address