Performance analysis of partial support recovery and signal reconstruction of compressed sensing

Performance analysis of partial support recovery and signal reconstruction of compressed sensing

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recent work in the area of compressed sensing mainly focuses on the perfect recovery of the entire support for sparse signals. However, partial support recovery, where a part of the signal support is correctly recovered, may be adequate in many practical scenarios. In this study, in the high-dimensional and noisy setting, the authors develop the probability of partial support recovery of the optimal maximum-likelihood (ML) algorithm. When a large part of the support is available, the asymptotic mean-square-error (MSE) of the reconstructed signal is further developed. The simulation results characterise the asymptotic performance of the ML algorithm for partial support recovery, and show that there exists a signal-to-noise ratio (SNR) threshold, beyond which the increase of SNR cannot bring any obvious MSE gain.


    1. 1)
      • 1. Wang, W., Wainwright, M.J., Ramchandran, K.: ‘Information theoretic limits on sparse signal recovery: dense versus sparse measurement matrices’, IEEE Trans. Inf. Theory, 2010, 56, (6), pp. 29672979 (doi: 10.1109/TIT.2010.2046199).
    2. 2)
      • 2. Fletcher, A.K., Rangan, S., Goyal, V.K.: ‘Necessary and sufficient conditions for sparsity pattern recovery’, IEEE Trans. Inf. Theory, 2009, 55, (12), pp. 57585772 (doi: 10.1109/TIT.2009.2032726).
    3. 3)
      • 3. Fletcher, A.K.: ‘Estimation via sparse approximation: error bounds and random frame analysis’. Master's thesis, University of California, Berkeley, 2005.
    4. 4)
      • 4. Vaswani, N., Lu, W.: ‘Modified-CS: modifying compressive sensing for problems with partially known support’, IEEE Trans. Signal Process., 2010, 58, (9), pp. 45954607 (doi: 10.1109/TSP.2010.2051150).
    5. 5)
      • 5. Ba, K.D., Indyk, P.: ‘Sparse recovery with partial support knowledge’. Proc. 14th Int. Workshop and 15th Int. Conf. Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques, 2011, pp. 2637.
    6. 6)
      • 6. Friedlander, M.P., Mansour, H., Saab, R., Yilmaz, O.: ‘Recovering compressively sampled signals using partial support information’, IEEE Trans. Inf. Theory, 2012, 58, (2), pp. 11221134 (doi: 10.1109/TIT.2011.2167214).
    7. 7)
      • 7. Jacques, L.: ‘A short note on compressed sensing with partially known signal support’, Signal Process., 2010, 90, (12), pp. 33083312 (doi: 10.1016/j.sigpro.2010.05.025).
    8. 8)
      • 8. Akcakaya, M., Tarokh, V.: ‘Noisy compressive sampling limits in linear and sublinear regimes’. Proc. Conf. Information Sciences and Systems, 2008, pp. 14.
    9. 9)
      • 9. Akcakaya, M., Tarokh, V.: ‘Shannon theoretic limits on noisy compressive sampling’, IEEE Trans. Inf. Theory, 2010, 56, (1), pp. 492504 (doi: 10.1109/TIT.2009.2034796).
    10. 10)
      • 10. Reeves, G.: ‘Sparse signal sampling using noisy linear projections’. Master's thesis, EECS Department, University of California, Berkeley, 2008, Available at
    11. 11)
      • 11. Hormati, A., Karbasi, A., Mohajer, S., Vetterli, M.: ‘An estimation theoretic approach for sparsity pattern recovery in the noisy setting’. arXiv preprint arXiv: 0911.4880, 2009.
    12. 12)
      • 12. Rad, K.R.: ‘Nearly sharp sufficient conditions on exact sparsity pattern recovery’, IEEE Trans. Inf.Theory, 2011, 57, (7), pp. 46724679 (doi: 10.1109/TIT.2011.2145670).
    13. 13)
      • 13. Tropp, J.A., Gilbert, A.C.: ‘Signal recovery from random measurements via orthogonal matching pursuit’, IEEE Trans. Inf. Theory, 2007, 53, (12), pp. 46554666 (doi: 10.1109/TIT.2007.909108).
    14. 14)
      • 14. Needell, D., Tropp, J.A.: ‘CoSaMP: iterative signal recovery from incomplete and inaccurate samples’, Appl. Comput. Harmon. Anal., 2009, 26, (3), pp. 301321 (doi: 10.1016/j.acha.2008.07.002).
    15. 15)
      • 15. Chen, S.S., Donoho, D.L., Saunders, M.A.: ‘Atomic decomposition by basis pursuit’, SIAM J. Sci. Comput., 1999, 20, (1), pp. 3361 (doi: 10.1137/S1064827596304010).
    16. 16)
      • 16. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series and products’ (Academic Press, New York, 2000, 6th edn.).
    17. 17)
      • 17. Xu, W., Lin, J., Niu, K., He, Z.: ‘On the performance of compressed sensing with partially correct support’, Wirel. Pers. Commun., 2013, 69, (4), pp. 18771884 (doi: 10.1007/s11277-012-0668-5).
    18. 18)
      • 18. Stankovic, L.J., Stankovic, S., Orovic, I., Amin, M.: ‘Robust time-frequency analysis based on the L-estimation and compressive sensing’, IEEE Signal Process. Lett., 2013, 20, (5), pp. 499502 (doi: 10.1109/LSP.2013.2252899).
    19. 19)
      • 19. Stankovic, S., Orovic, I., Amin, M.: ‘L-statistics based modification of reconstruction algorithms for compressive sensing in the presence of impulse noise’, Signal Process., 2013, 93, (11), pp. 29272931 (doi: 10.1016/j.sigpro.2013.04.022).
    20. 20)
      • 20. Nagaraja, H.N., Abo-Eleneen, Z.A.: ‘Fisher information in order statistics’, Pakistan J. Stat., 2003, 19, (1), pp. 161173.
    21. 21)
      • 21. Nielsen, J.: ‘The distribution of volume reductions induced by isotropic random projections’, Adv. Appl. Probab., 1999, 31, (4), pp. 985994 (doi: 10.1239/aap/1029955254).
    22. 22)
      • 22. Evans, J., Tse, D.N.C.: ‘Large system performance of linear multiuser receivers in multipath fading channels’, IEEE Trans. Inf. Theory, 2000, 46, (6), pp. 20592078 (doi: 10.1109/18.868478).
    23. 23)
      • 23. Tulino, A., Verdu, S.: ‘Random matrix theory and wireless communications’ (Publisher Inc., MS, 2004).

Related content

This is a required field
Please enter a valid email address