Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Application of joint time–frequency domain reflectometry for electric power cable diagnostics

Application of joint time–frequency domain reflectometry for electric power cable diagnostics

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The integrity of the electric power cables is vital to the safety of an entire electrical system. To ensure the health of the cables, a technique is needed for both detecting/locating defects, and predicting hard defects before they occur. The theory and limitations of the classical wiring diagnostic techniques time domain reflectometry (TDR) and frequency domain reflectometry (FDR) are discussed. This study then introduces joint time-frequency domain reflectometry (JTFDR) as a unique solution for the cable diagnostics and prognostics. By employing an interrogating incident signal and advanced post-processing of the reflected signals, JTFDR is shown to be capable of overcoming those limitations. JTFDR is experimentally proven to be successful for detecting and locating both hard and incipient defects. The prognostic capabilities of JTFDR are also demonstrated via accelerated ageing tests of an electric power cable. By utilising the incident/reflected signal information in the time and frequency domains simultaneously, JTFDR is proven to be a more effective diagnostic technique than the classical TDR and FDR. JTFDR can also be used to monitor incipient defects and better predict hard defects before they occur.

References

    1. 1)
      • The Boeing Company and Brookhaven National Laboratory: ‘Evaluation of the broadband impedance spectroscopy prognostic/diagnostic technique for electric cables used in nuclear power plants’, NUREG/CR-6904, BNL-NUREG-75208-2005, 2005.
    2. 2)
      • R.J. Van Brunt , K.L. Stricklett , J.P. Steiner , S.V. Kulkarni . Recent advances in partial discharge measurement capabilities at NIST. IEEE Trans. Dielectr. Electr. Insul. , 1 , 114 - 130
    3. 3)
      • Wang, J., Crapse, P., Shin, Y.J., Dougal, R.: `Diagnostics and prognostics of electric cables in nuclear power plants via joint time–frequency domain reflectometry', IEEE Int. Symp. Electrical Insulation, June 2008, Vancouver, Canada, p. 24–27.
    4. 4)
    5. 5)
      • E.L. Leguenza , R. Robert , J.A. Giacometti . Dielectric and viscoelastic properties of cross-linked polyethylene aged under multistressing conditions. IEEE Trans. Dielectr. Electr. Insul. , 3 , 406 - 417
    6. 6)
      • Wang, J., Crapse, P., Shin, Y.J., Dougal, R.: `Diagnostics and prognostics of electric cables in ship power systems via joint time–frequency domain reflectometry', Proc. IEEE Instrumentation and Measurement Technology Conf., May 2008, Victoria, Canada, p. 917–921.
    7. 7)
    8. 8)
      • K. Anandakumaran , W. Seidl , P.V. Castaldo . Condition assessment of cable insulation systems in operating nuclear power plants. IEEE Trans. Dielectr. Electr. Insul. , 3 , 376 - 384
    9. 9)
      • IEEE Standard-1064-1991: ‘Guide for multifactor stress functional testing of electrical insulation systems’, 1991.
    10. 10)
      • Anritsu Site Master: ‘Distance to Fault’, Application Note.
    11. 11)
      • Cohen, L.: `Wave propagation with dispersion and damping', Proc. SPIE, Denver, USA, 2004, 001.5559, p. 201–220.
    12. 12)
      • H. Willis , G. Welch , R. Schrieber . (2001) Aging power delivery infrastructure.
    13. 13)
      • G. Mazzanti . Analysis of the combined effects of load cycling, thermal transients, and electrothermal stress on life expectancy of high-voltage AC cables. IEEE Trans. Power Deliv. , 4 , 2000 - 2009
    14. 14)
      • I. Shim , J.J. Soraghan , W.H. Siew . Application of digital signal processing to the detection of partial discharge part 2: optimized A/D conversion. IEEE Electr. Insul. Mag. , 4 , 11 - 15
    15. 15)
      • F. Aras , V. Alekperov , N. Can , H. Kirkici . Aging of 154 kV underground power cable insulation under combined thermal and electrical stresses. IEEE Electr. Insul. Mag. , 5 , 25 - 33
    16. 16)
      • S.B. Dalal , R.S. Gorur . Aging of distribution cables in service and its simulation in the laboratory. IEEE Trans. Dielectr. Electr. Insulation , 1 , 139 - 146
    17. 17)
      • H.E. Orton , R. Hartlein . (2006) Long life XLPE insulated power cables.
    18. 18)
    19. 19)
      • K. Anandakumaran , W. Seidl , P.V. Castaldo . Condition assesment of cable insulation systems in operating nuclear power plants. IEEE Trans. Dielectr. Electr. Insul. , 3 , 376 - 384
    20. 20)
      • Cohen, L.: `Pulse propagation in dispersive media', Proc. Tenth IEEE Workshop Statistical Signal and Array Processing, 2000, Pocono Manor, USA, p. 485–489.
    21. 21)
    22. 22)
      • T. Fawcett , D. Hilder , K. Johnson , B. Larzelere . Experience in PD site location in XLPE cables. IEEE Electr. Insul. Mag. , 5 , 8 - 12
    23. 23)
      • E. Song , Y.J. Shin , P. Stone . Detection and location of multiple wiring faults via time–frequency domain reflectometry. IEEE Trans. Electromagn. Compat. , 1 , 131 - 138
    24. 24)
    25. 25)
    26. 26)
      • Toman, G.J., Gazdzinski, R.F.: `Results of indenter testing of in-plant and artificially aged cable specimens', Proc. IEEE Int. Symp. Electrical Insulation, June 1994, Pittsburgh, USA, p. 372–375.
    27. 27)
      • S.P. Cygan , J.R. Laghari . Effects of multistress aging (radiation, thermal, electrical) on polypropylene. IEEE Trans. Nuclear Sci. , 3 , 906 - 912
    28. 28)
    29. 29)
      • I. Shim , J.J. Soraghan , W.H. Siew . Digital signal processing applied to the detection of partial discharge: an overview. IEEE Electr. Insul. Mag. , 3 , 6 - 12
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2009.0137
Loading

Related content

content/journals/10.1049/iet-spr.2009.0137
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address