© The Institution of Engineering and Technology
The discrete time–frequency matched filter should replicate the continuous time–frequency matched filter, but the methods differ. To avoid aliasing, the discrete method transforms the realvalued signal to the complexvalued analytic signal. The theory for the time–frequency matched filter does not consider the discrete case using the analytic signal. The authors find that the performance of the matched filter degrades when using the analytic, rather than realvalued, signal. This performance degradation is dependent on the signaltonoise ratio and the signal type. In addition, the authors present a simple algorithm to efficiently compute the time–frequency matched filter. The algorithm with the realvalued signal, comparative to using the analytic signal, requires onequarter of the computational load. Hence the realvalued signal – and not the analytic signal – enables an accurate and efficient implementation of the time–frequency matched filter.
References


1)

B. Boashash ,
P. O' Shea
.
A methodology for detection and classification of some underwater acoustic signals using time–frequency analysis techniques.
IEEE Trans. Acoust., Speech, Signal Process.
,
11 ,
1829 
1841

2)

V.C. Chen
.
Radar ambiguity function, timevarying matched filter, and optimum wavelet correlator.
Opt. Eng.
,
337 
345

3)

C. Wen ,
J. Doherty ,
J. Mathews
.
Time–frequency radar processing for meteor detection.
IEEE Trans. Geosci. Remote Sens.
,
3 ,
501 
510

4)

C. Richard ,
R. Lengelle
.
Joint time and time–frequency optimal detection of Kcomplexes in sleep EEG.
Comput. Biomed. Res.
,
3 ,
209 
229

5)

O' Toole, J.M., Mesbah, M., Boashash, B., Colditz, P.: `A new neonatal seizure detection technique based on the time–frequency characteristics of the electroencephalogram', Proc. Int. Sym. on Signal Processing and its Applications, ISSPA07, 12–15 February 2007, Sharjah, United Arab Emirates, III, p. 132–135.

6)

A. Sinsky ,
C. Wang
.
Standardization of the definition of the radar ambiguity function.
IEEE Trans. Aerosp. Electron. Syst.
,
4 ,
532 
533

7)

T. Kailath ,
H. Poor
.
Detection of stochastic processes.
IEEE Trans. Inf. Theory
,
6 ,
2230 
2259

8)

P. Flandrin
.
A time–frequency formulation of optimum detection.
IEEE Trans. Acoust., Speech, Signal Process.
,
9 ,
1377 
1384

9)

A. Sayeed ,
B. Boashash
.
(2003)
Optimal time–frequency detectors, Time–frequency signal analysis and processing: a comprehensive reference.

10)

T. Claasen ,
W. Mecklenbräuker
.
The Wigner distribution–a tool for time–frequency signal analysis. Part II: discretetime signals.
Philips J. Res.
,
276 
350

11)

O' Toole, J., Mesbah, M., Boashash, B.: `A discrete time and frequency Wigner–Ville distribution: properties and implementation', Proc. Int. Conf. on Digital Signal Processing and Comm. Systems, 19–21 December 2005, Noosa Heads, Australia, CDROM, [Online], available at: http://eprints.qut.edu.au/2607/.

12)

J.M. O' Toole ,
M. Mesbah ,
B. Boashash
.
A new discrete analytic signal for reducing aliasing in the discrete Wigner–Ville distribution.
IEEE Trans. Signal Process.
,
11 ,
5427 
5434

13)

J.M. O' Toole ,
M. Mesbah ,
B. Boashash
.
Improved discrete definition of quadratic time–frequency distributions.
IEEE Trans. Signal Process.
,
2 ,
906 
911

14)

V. Chen
.
Doppler signatures of radar backscattering from objects with micromotions.
IET Signal Process.
,
3 ,
291 
300

15)

T. Thayaparan ,
S. Kennedy
.
Detection of a manoeuvring air target in seaclutter using joint time–frequency analysis techniques.
IEE Proc., Radar Sonar Navig.
,
1 ,
19 
30

16)

Y. Zhang ,
S. Qian ,
T. Thayaparan
.
Detection of a manoeuvring air target in strong sea clutter via joint time–frequency representation.
IET Signal Process.
,
3 ,
216 
222

17)

B. Boashash ,
B. Boashash
.
(2003)
Part I: introduction to the concepts of TFSAP, Time–frequency signal analysis and processing: a comprehensive reference.

18)

D.K. Mellinger ,
C.H. Clark
.
Recognizing transient lowfrequency whale sounds by spectrogram correlation.
Acoust. Soc. Am.
,
6 ,
3518 
3529

19)

B. Boashash ,
M. Mesbah ,
A. PapandreouSuppappola
.
(2003)
Time–frequency methodology for newborn electroencephalographic seizure detection, Applications in time–frequency signal processing.

20)

F. Peyrin ,
R. Prost
.
A unified definition for the discretetime, discretefrequency, and discretetime/frequency Wigner distributions.
IEEE Trans. Acoust., Speech, Signal Process.
,
4 ,
858 
866

21)

B.V. Kumar ,
C. Carroll
.
Effects of sampling on signal detection using the cross‐Wigner distribution function.
Appl. Opt
,
4090 
4094

22)

C. Richard
.
Time–frequencybased detection using discretetime discretefrequency Wigner distributions.
IEEE Trans. Signal Process.
,
9 ,
2170 
2176

23)

S.L. Marple
.
Computing the discretetime “analytic” signal via FFT.
IEEE Trans. Signal Process.
,
2600 
2603

24)

A.V. Oppenheim ,
R.W. Schafer
.
(1989)
Discretetime signal processing.

25)

P. Duhamel
.
Implementation of “splitradix” FFT algorithms for complex, real and realsymmetric data.
IEEE Trans. Acoust., Speech, Signal Process
,
2 ,
285 
295

26)

P. Duhamel ,
M. Vetterli
.
Fast fourier transforms: a tutorial review and a state of the art.
Signal Process.
,
259 
299

27)

M. Frigo ,
S.G. Johnson
.
The design and implementation of FFTW3.
Proc. IEEE
,
2 ,
216 
231

28)

J.M. O' Toole ,
M. Mesbah ,
B. Boashash
.
(2008)
Algorithms for discrete quadratic time–frequency distributions’, WSEAS Trans. Signal Process., invited paper.

29)

G. Cunningham ,
W. Williams
.
Fast implementations of generalized discrete time–frequency distributions.
IEEE Trans. Signal Process.
,
6 ,
1496 
1508
http://iet.metastore.ingenta.com/content/journals/10.1049/ietspr.2009.0104
Related content
content/journals/10.1049/ietspr.2009.0104
pub_keyword,iet_inspecKeyword,pub_concept
6
6