http://iet.metastore.ingenta.com
1887

Two-dimensional Hermite S-method for high-resolution inverse synthetic aperture radar imaging applications

Two-dimensional Hermite S-method for high-resolution inverse synthetic aperture radar imaging applications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The two-dimensional multiwindow S-method for radar imaging applications is proposed. It represents a combined technique that uses the standard S-method and the multiple windows approach based on the two-dimensional Hermite functions. The proposed method provides significant improvement of radar image concentration in comparison with the standard S-method. Also, it does not require an additional post-processing algorithm. The efficiency of the proposed method is demonstrated through various examples.

References

    1. 1)
      • W.G. Carrara , R.S. Goodman , R.M. Majewski . (1995) Spotlight synthetic aperture radar – signal processing algorithms.
    2. 2)
      • Wong, S., Riseborough, E., Duff, G.: `Experimental investigation on the distortion of ISAR images using different radar waveforms', Technical Memorandum TM 2003-196, 2003, Ottawa, Canada, Defence Research and Development.
    3. 3)
      • V.C. Chen , H. Ling . (2002) Time–frequency transforms for radar imaging and signal analysis.
    4. 4)
      • S.R. DeGraaf . SAR imaging via modern 2-D spectral estimation methods. IEEE Trans. Image Process. , 5 , 729 - 761
    5. 5)
      • Popovic, V., Dakovic, M., Thayaparan, T., Stankovic, L.J.: `SAR image improvements by using the S-method', Proc. IEEE ICASSP, May 2006, 3, p. pp. III 177–III 180.
    6. 6)
      • Stanković, LJ., Thayaparan, T., Dakovic, M., Popovic, V.: `S-method in radar imaging', Proc. 14th European Signal Processing Conf., (EUSIPCO, 2006), September 2006, Florence, Italy.
    7. 7)
      • T. Thayaparan , LJ. Stanković , C. Wernik , M. Daković . Real-time motion compensation, image formation and image enhancement of moving targets in ISAR and SAR using S-method based approach. IET Signal Process. , 3 , 247 - 264
    8. 8)
      • LJ. Stanković , T. Thayaparan , V. Popović , I. Djurović , M. Daković . Adaptive S-method for SAR/ISAR imaging. Eurasip J. Adv. Signal Process.
    9. 9)
      • I. Djurović , T. Thayaparan , LJ. Stanković . Adaptive local polynomial Fourier transform in ISAR. Eurasip J. Appl. Signal Process.
    10. 10)
      • W. Haiqing , D. Grenier , G.Y. Delisle , F. Da-Gang . Translational motion compensation in ISAR image processing. IEEE Trans. Image Process. , 11 , 1561 - 1571
    11. 11)
      • L.J. Stanković . A method for time-frequency signal analysis. IEEE Trans. Signal Process. , 1 , 225 - 229
    12. 12)
      • Thayaparan, T., Stanković, LJ., Daković, M.: `S-method based approach for image formation, motion compensation, and image enhancement of moving targets in ISAR and SAR', IEEE Int. Symp. on Geoscience and Remote Sensing, IGARSS 2008, July 2008, 2, p. pp. II-29–II-32.
    13. 13)
      • S. Stanković , LJ. Stanković , Z. Uskoković . On the local frequency, group shift and cross terms in some multidimensional time–frequency distributions. A method for multidimensional time–frequency analysis. IEEE Trans. Signal Process. , 7 , 1719 - 1724
    14. 14)
      • S. Stanković , LJ. Stanković , V. Ivanović , R. Stojanović . An architecture for the VLSI design of systems for time–frequency analysis and time-varying filtering. Ann. des Telecommun. , 974 - 995
    15. 15)
      • S. Stanković , I. Djurović , V. Vuković . System architecture for space-frequency image analysis. Electron. Lett. , 23 , 2224 - 2225
    16. 16)
      • Najafi, M., Krylov, A., Kortchagine, D.: `Image deblocking with 2-D Hermite transform', Proc. Int. Conf. on Graphicon, 2003, Moscow, p. 180–183.
    17. 17)
      • Krylov, A., Kortchagine, D.: `Hermite foveation', Proc. Int. Conf. on Graphicon, 2004, Moscow, p. 166–169.
    18. 18)
      • Kortchagine, D.N., Krylov, A.S.: `Projection filtering in image processing', Proc. Int. Conf. on Graphicon, 2000, p. 42–45.
    19. 19)
      • Fraser, G., Boashash, B.: `Multiple window spectrogram and time-frequency distributions', Proc. IEEE ICASSP, 1994, 4, p. 293–296.
    20. 20)
      • Bayram, M., Baraniuk, R.G.: `Multiple window time-frequency analysis', Proc. IEEE Signal Processing Int. Symp. on Time-Frequency and Time-Scale Analysis, June 1996, p. 173–176.
    21. 21)
      • F. Cakrak , P.J. Loughlin . Multiwindow time-varying spectrum with instantaneous bandwidth and frequency constraints. IEEE Trans. Signal Process. , 8 , 1656 - 1666
    22. 22)
      • K. Toraichi , M. Kamada , S. Itahashi , R. Mori . Window functions represented by B-spline functions. IEEE Trans. Acoust. Speech Signal Process. , 1 , 145 - 147
    23. 23)
      • M. Cohen , G. Cauwenberghs , M. Vorontsov . Image sharpness and beam focus VLSI sensors for adaptive optics. IEEE Sensors J. , 6 , 680 - 690
    24. 24)
      • H.J. Callow , T.O. Saebo , R.E. Hansen . Towards robust quality assessment of SAS imagery using the DPCA algorithm. Oceans 2005 – Europe , 1095 - 1100
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2009.0060
Loading

Related content

content/journals/10.1049/iet-spr.2009.0060
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address