Modelling cardiovascular physiological signals using adaptive Hermite and wavelet basis functions

Access Full Text

Modelling cardiovascular physiological signals using adaptive Hermite and wavelet basis functions

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presented a unified perspective of adaptive basis functions to compare Hermite decomposition and wavelet transform for the analysis of cardiovascular physiological signals. Three different algorithms were presented to carry out physiological signal modelling with adaptive Hermite basis functions (HBFs), orthonormal wavelet basis functions (OWBFs) and adaptive wavelet basis functions (AWBFs). The modelling with OWBFs is computationally efficient. However, the concomitant restrictions in mathematics make OWBFs not optimal for compact modelling. In contrast, the optimised AWBFs can model cardiovascular physiological signals compactly with the cost of losing orthonormality. It not only sacrifices the fast implementation but also degrades AWBFs in discriminant analysis. In summary, merely HBFs achieve a balanced performance in compact modelling and discriminant analysis.

Inspec keywords: cardiovascular system; wavelet transforms; physiology; medical signal processing

Other keywords: orthonormal wavelet basis functions; Hermite decomposition; OWBF; discriminant analysis; cardiovascular physiological signal modelling; adaptive Hermite basis functions; wavelet transform; HBF; adaptive wavelet basis functions

Subjects: Biomedical measurement and imaging; Function theory, analysis; Integral transforms; Biology and medical computing; Digital signal processing; Biomedical engineering; Integral transforms; Signal processing and detection

References

    1. 1)
      • A.I. Rasiah , R. Togneri , Y. Attikiouzel . Modelling 1-D signals using Hermite basis functions. IEE Proc. Vis. Image Signal Process. , 6 , 345 - 354
    2. 2)
      • A.L. Goldberger , L.A.N. Amaral , L. Glass . PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation , e215 - e220
    3. 3)
    4. 4)
      • K. Kario , N. Yasui , H. Yokoi . Ambulatory blood pressure monitoring for cardiovascular medicine. IEEE Eng. Med. Biol. , 3 , 81 - 88
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • I. Korhonen , J. Parkka , M. Van Gils . Health monitoring in the home of the future. IEEE Eng. Med. Biol. , 3 , 66 - 73
    11. 11)
      • D.L. Donoho , I.M. Johnstone . Minimax estimation via wavelet shrinkage. Ann. Stat. , 3 , 879 - 921
    12. 12)
      • N. Maglaveras , T. Stamkopoulos , K. Diamantaras , C. Pappas , M. Strintzis . ECG pattern recognition and classification using non-linear transformations and neural networks: a review. Int. J. Med. Inf. , 191 - 208
    13. 13)
    14. 14)
      • B.N. Li , M.C. Dong , M.I. Vai . Development of a mobile pulse waveform analyzer for cardiovascular health monitoring. Comput. Biol. Med. , 4 , 438 - 445
    15. 15)
    16. 16)
      • R.O. Duda , P.E. Hart , D.G. Stork . Pattern classification.
    17. 17)
      • D.E. Mohrman , L.J. Heller . (2006) Cardiovascular physiology.
    18. 18)
      • K.C. Li . Asymptotic optimality of CL and generalized cross-validation: discrete index set. Ann. Stat. , 958 - 975
    19. 19)
    20. 20)
      • Z.X. Fei . (2003) Contemporary sphygmography of Chinese medicine.
    21. 21)
      • C. Zywietz , D. Celikag , G. Joseph . Influence of measurement accuracy on ECG diagnostic statements. J. Electrocardiol. , 67 - 72
    22. 22)
      • Z. Wang , X. Ning , Y. Zhang , G. Du . Nonlinear dynamic characteristics analysis of synchronous 12-lead ECG signals. IEEE Eng. Med. Biol. , 5 , 110 - 115
    23. 23)
    24. 24)
      • I. Bayram , I.W. Selesnick . Overcomplete discrete wavelet transforms with rational dilation factors. IEEE Trans. Signal Process. , 1 , 131 - 145
    25. 25)
      • B.N. Li , M.C. Dong , M.I. Vai . On an automatic delineator for arterial blood pressure waveforms. Biomed. Signal Process. Control , 1 , 76 - 81
    26. 26)
      • L.T. Hoai , S. Osowski , M. Stodolski . On-line heart beat recognition using Hermite polynomials and neuro-fuzzy network. IEEE Trans. Instrum. Meas. , 4 , 1224 - 1231
    27. 27)
      • L. Senhadii , G. Carrault , J.J. Bellanger , G. Passariello . Comparing wavelet transforms for recognizing cardiac patterns. IEEE Engng. Med. Biol. , 2 , 167 - 173
    28. 28)
      • G. Basseli , S. Cerutti , S. Civardi , A. Malliani , M. Pagani . Cardiovascular variability signals: towards the identification of a closed-loop model of the neural control mechanisms. IEEE Trans. Biomed. Eng. , 12 , 1033 - 1046
    29. 29)
      • R.C. Barr , M.S. Spach , G.S. Herman-Giddens . Selection of the number and positions of measuring locations for electrocardiography. IEEE Eng. Med. Biol. , 125 - 138
    30. 30)
      • R. Benzid , F. Marir , N.E. Bouguechal . Electrocardiogram compression method based on the adaptive wavelet coefficients quantization combined to a modified two-role encoder. IEEE Signal Process. Lett. , 6 , 373 - 376
    31. 31)
      • W.L. Qian , L.Y. Xu , F.Y. Chen , R.L. Zheng . Acquiring characteristics of pulse wave by Gaussian function separation. Chin. J. Biomed. Eng. , 1 , 1 - 7
    32. 32)
      • I. Daubechies . (1992) Ten lectures on wavelets.
    33. 33)
      • H. Akaike . Statistical predicator identification. Ann. Inst. Math. Stat. , 203 - 217
    34. 34)
      • W.K. Lei , B.N. Li , M.C. Dong , M.I. Vai , A. Saad , E. Avineri , K. Dahal , M. Sarfraz , R. Roy . (2007) AFC-ECG: an adaptive fuzzy ECG classifier.
    35. 35)
    36. 36)
      • S. Suppappola , Y. Sun , S.A. Chiaramida . Gaussian pulse decomposition: an intuitive model of electrocardiogram waveforms. Ann. Biomed. Eng. , 252 - 260
    37. 37)
      • J.K. Zhang , T.N. Davidson , K.M. Wong . Efficient design of orthonormal wavelet bases for signal representation. IEEE Trans. Signal Process. , 7 , 1983 - 1996
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2009.0002
Loading

Related content

content/journals/10.1049/iet-spr.2009.0002
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading