Incremental learning approach based on vector neural network for emitter identification

Access Full Text

Incremental learning approach based on vector neural network for emitter identification

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

To deal with the problem of emitter identification (EID) caused by the measurement uncertainty of emitter feature parameters and to realise the automatic updating of the emitter database, which is usually used as emitter templates in identification processing, a vector neural network based incremental learning (VNNIL) approach for EID is proposed. This method combines the vector neural networks (VNNs) and the ensemble-based incremental learning (Learn++) algorithm. The VNN is adopted to construct a weak classifier and the Learn++ is used to generate ensembles of the weak classifiers. Considering that the VNN can realise the non-linear mapping between the interval-value input data and the interval-value output emitter types, and that the Learn++ can update the emitter database automatically, the VNNIL treats the two mentioned problems above as a single one and realises EID and parameters updating at the same time. A number of simulations are presented to demonstrate the identification and updating capability of the VNNIL algorithm. As shown in the simulation results, the VNNIL algorithm not only possesses a better learning and identification capability, but also achieves a better noise adaptability.

Inspec keywords: neural nets; radar; learning (artificial intelligence)

Other keywords: emitter database update; vector neural network; Learn++ algorithm; incremental learning approach; emitter identification

Subjects: Neural computing techniques; Communications computing; Military detection and tracking systems; Radar equipment, systems and applications

References

    1. 1)
      • Wnuk, M., Kawalec, A., Dudczyk, J., Owczarek, R.: `The method of regression analysis approach to the specific emitter identification', Proc. 16th Int. Conf. Microwaves, Radar and Wireless Communications (MIKON 2006), May 2006, Krakow, Poland, p. 491–494.
    2. 2)
      • Matuszewski, J.: `Specific emitter identification', Proc. Int. Radar Symp. (IRS 2008), May 2008, Wroclaw, Poland, p. 1–4.
    3. 3)
      • Q. Huo , C.-H. Lee . A Bayesian predictive classification approach to robust speech recognition. IEEE Trans. Speech Audio Process. , 2 , 200 - 204
    4. 4)
      • D. Parikh , R. Polikar . An ensemble-based incremental learning approach to data fusion. IEEE Trans. Syst. Man Cybern. , 2 , 437 - 450
    5. 5)
      • Hassan, S.A., Bhatti, A.I., Latif, A.: `Emitter recognition using fuzzy inference system', Proc. IEEE Int. Symp. Emerging Technologies, September 2005, Islamabad, Pakistan, p. 204–208.
    6. 6)
      • J. Liu , J.P.Y. Lee , L. Li , Z.-Q. Luo , K.M. Wong . Online clustering algorithms for radar emitter classification. IEEE Trans. Pattern Anal. Mach. Intell. , 8 , 1185 - 1196
    7. 7)
      • S. Wan , L.E. Banta . Parameter incremental learning algorithm for neural networks. IEEE Trans. Neural Netw. , 6 , 1424 - 1438
    8. 8)
      • B. Zhang , S.N. Srihari . Fast k-nearest neighbor classification using cluster-based trees. IEEE Trans. Pattern Anal. Mach. Intell. , 4 , 525 - 528
    9. 9)
      • R. Polikar , L. Upda , S.S. Upda , V. Honavar . Learn++: an incremental learning algorithm for supervised neural networks. IEEE Trans. Syst. Man Cybern. , 4 , 497 - 508
    10. 10)
      • H. Ishibuchi , T. Yamamoto . Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. , 4 , 428 - 435
    11. 11)
      • C.-S. Shieh , C.-T. Lin . A vector neural network for emitter identification. IEEE Trans. Antennas Propag. , 8 , 1120 - 1127
    12. 12)
      • Xu, D., Yang, B., Jiang, W.L., Zhou, Y.Y.: `An improved SVDU-IKPCA algorithm for specific emitter identification', Proc. IEEE Int. Conf. Information and Automation (ICIA 2008), June 2008, Zhangjiajie, China, p. 692–696.
    13. 13)
      • Kidera, T., Ozawa, S., Abe, S.: `An incremental learning algorithm of ensemble classifier systems', Int. Joint Conf. Neural Networks (IJCNN 2006), July 2006, Vancouver, BC, Canada, p. 3421–3427.
    14. 14)
      • http://en.wikipedia.org/wiki/Iris_flower_data_set, accessed April 2008.
    15. 15)
      • H. Ishibuchi , R. Fujioka , H. Tanaka . Neural networks that learn from fuzzy if-then rules. IEEE Trans. Fuzzy Syst. , 2 , 85 - 97
    16. 16)
      • G.B. Willson . Radar classification using a neural network. Proc. Appl. Artif. Neural Netw., SPIE , 200 - 210
    17. 17)
      • D.C. Schleher . (1986) Introduction to electronic warfare.
    18. 18)
      • Liu, M.-W., Doherty, J.F.: `Specific emitter identification using nonlinear device estimation', Proc. IEEE Sarnoff Symp. (SARNOFF 2008), April 2008, Princeton, NJ, USA, p. 1–5.
    19. 19)
      • L. Fu . Incremental knowledge acquisition in supervised learning networks. IEEE Trans. Syst. Man Cybern. , 6 , 801 - 809
    20. 20)
      • S.S. Liao , T.H. Tang , W.-Y. Liu . Finding relevant sequences in time series containing crisp, interval, and fuzzy interval data. IEEE Trans. Syst. Man Cybern. , 5 , 2071 - 2079
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2008.0240
Loading

Related content

content/journals/10.1049/iet-spr.2008.0240
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading