Two-dimensional direction of arrival estimation in the presence of uncorrelated and coherent signals

Access Full Text

Two-dimensional direction of arrival estimation in the presence of uncorrelated and coherent signals

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this paper, a novel two-dimensional direction of arrival (2-D DOA) estimation method is proposed based on a new array configuration when uncorrelated and coherent signals coexist. The DOAs of uncorrelated signals are estimated using the non-zero eigenvalues and corresponding eigenvectors of the DOA matrix (DOAM) combined with our proposed criterion. Meanwhile, we can form a new matrix without the information of uncorrelated signals. Then the coherent signals are resolved with the redefined DOAM that is constructed by the smoothed matrices of the new matrix. Simulation results demonstrate the effectiveness and efficiency of the proposed method. Other arrays that contain multiple identical central-symmetric subarrays (e.g. uniform rectangular arrays) can also be applied with our method.

Inspec keywords: array signal processing; direction-of-arrival estimation; matrix algebra; eigenvalues and eigenfunctions

Other keywords: coherent signal; direction of arrival estimation; uncorrelated signal; smoothed matrix; eigenvectors; non-zero eigenvalues; array signal processing; DOA matrix

Subjects: Linear algebra (numerical analysis); Signal processing and detection; Linear algebra (numerical analysis); Signal processing theory

References

    1. 1)
      • T.H. Liu , J.M. Mendel . Azimuth and elevation direction finding using arbitrary geometries. IEEE Trans. Signal Process. , 7 , 2061 - 2065
    2. 2)
      • C.-M. Chen . On spatial smoothing for two-dimensional direction-of-arrival estimation of coherent signals. IEEE Trans. Signal Process. , 7 , 1689 - 1696
    3. 3)
      • T.-J. Shan , M. Wax , T. Kailath . On spatial smoothing for direction-of-arrival estimationof coherent signals. IEEE Trans. Acoust. Speech Signal Process. , 4 , 806 - 811
    4. 4)
      • M. Wax , T. Kailath . Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process. , 2 , 387 - 392
    5. 5)
      • S.U. Pillai , B.H. Kwon . Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans. Acoust. Speech Signal Process. , 1 , 8 - 15
    6. 6)
      • R. Horn , C. Johnson . (1985) Matrix analysis.
    7. 7)
      • Y.H. Choi . Subspace-based coherent source localization with forward/backward covariance matrices. IEE Proc. Radar Sonar Navigat. Mar. , 3 , 145 - 151
    8. 8)
      • R.O. Schmidt . Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propagat. , 3 , 276 - 280
    9. 9)
      • M.L. McCloud , L.L. Scharf . A new subspace identification algorithm for high resolution DOA estimation. IEEE Trans. Antennas Propagat. , 10 , 1382 - 1390
    10. 10)
      • B. Friedlander , A.J. Weiss . Direction finding in the presence of mutual coupling. IEEE Trans. Antennas Propagat. , 3 , 273 - 284
    11. 11)
      • X. Xu , Z.F. Ye , Y.F. Zhang , C.Q. Chang . A deflation approach to direction of arrival estimation for symmetric uniform linear array. IEEE Antennas Wireless Propagat. Lett. , 1 , 486 - 489
    12. 12)
      • H. Cozzens , M.J. Sousa . Source enumeration in a correlated signal environment. IEEE Trans. Signal Process. , 2 , 304 - 317
    13. 13)
      • F.A. Sakarya , M.W. Hayes . Estimating 2-D DOA angles using nonlinear array configurations. IEEE Trans. Acoust. Speech Signal Process. , 9 , 2212 - 2216
    14. 14)
      • Yin, Q.Y., Newcomb, R.W., Zou, L.H.: `Estimating 2-D angles of arrival via two parallel linear arrays', Proc. ICASSP, 1989, 4, p. 2803–2806.
    15. 15)
      • C.-C. Yeh , J.-H. Lee , Y.-M. Chen . Estimating two-dimensional angles of arrival in coherent source environment. IEEE Trans. Acoust. Speech Signal Process. , 1 , 153 - 155
    16. 16)
      • H. Wang , K.J. Ray Liu . 2-D spatial smoothing for multipath coherent signal separation. IEEE Trans. Aerosp. Electron. Syst. , 2 , 391 - 405
    17. 17)
      • Z.F. Ye , X. Xu . DOA estimation by exploiting the symmetric configuration of uniform linear array. IEEE Trans. Antennas Propagat. , 12 , 3716 - 3720
    18. 18)
      • Yin, Q.Y., Newcomb, R.W., Zou, L.H.: `Estimating two-dimensional directions of arrival of narrow band sources', TENCON, 1990, 1, p. 389–393.
    19. 19)
      • R. Roy , T. Kailath . ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. , 7 , 984 - 995
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2008.0145
Loading

Related content

content/journals/10.1049/iet-spr.2008.0145
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading