Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Digital fractional order operators for R-wave detection in electrocardiogram signal

Digital fractional order operators for R-wave detection in electrocardiogram signal

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, we present an effective R-wave detection method in the QRS complex of the electrocardiogram (ECG) based on digital differentiation and integration of fractional order. The detection algorithm is performed in two steps. The pre-processing step is based on a fractional order digital band-pass filter whose fractional order is obtained by maximising the signal to noise ratio of the ECG signal, followed by a five points differentiator of fractional order 1.5 then the squaring transformation and the smoothing are used to generate peaks corresponding to the ECG parts with high slopes. The detection step is a new and simple strategy which is also based on fractional order operators for the localisation of the R waves. The MIT/BIH arrhythmia database is used to test the effectiveness of the proposed method. The algorithm has provided very good performance and has achieved about 99.86% of the detection rate for the standard database. The results obtained are presented, discussed and compared to the most recent and efficient R-wave detection algorithms.

References

    1. 1)
      • Y. Ferdi , J.P. Herbeuval , A. Charef , B. Boucheham . R wave detection using fractional digital differentiation. ITBM-RBM , 5 , 273 - 280
    2. 2)
      • B.-U. Kohler , C. Hennig , R. Orglmeister . The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. , 1 , 42 - 57
    3. 3)
      • Ferdi, Y., Herbeuval, J.P., Charef, A.: `Variance reduction of prediction error using fractional digital differentiation: application to ECG signal processing', Proc. 23rd IEEE/EMBS Annual Conf., 2001, Istanbul, Turkey, p. 25–28.
    4. 4)
      • B. Mathieu , P. Melchior , A. Oustaloup , C. Ceyral . Fractional differentiation for edge detection. Signal Process. , 2421 - 2432
    5. 5)
      • C. Zheng , C. Li , C. Tai . Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. , 1 , 21 - 28
    6. 6)
      • Jané, R., Laguna, P., Caminal, P., Rix, H.: `Adaptive filtering of high-resolution ECG signals', IEEE Comp. Cardiol. Proc., 23–26 September 1990, Chicago, USA, p. 23–26.
    7. 7)
      • A. Charef . Analogue realization of fractional order integrator, differentiator and fractional PIλDμ controllers. IEE Proc. Control Theory Appl. , 6 , 714 - 720
    8. 8)
      • A.L. Goldberger , V. Bhargava , B.J. West , A.J. Mandel . On a mechanism of cardiac electrical stability, the fractal hypothesis. Biophys J. , 525 - 528
    9. 9)
      • M. Ichise , Y. Nagayanagi , T. Kojima . An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. Electro. Anal. Chem. , 253 - 256
    10. 10)
      • G.M. Fresen , T.C. Jannett , M.A. Jadallah , S.L. Yates , S.R. Quint , H.T. Nagle . A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomed. Eng. , 1 , 85 - 98
    11. 11)
      • P.S. Hamilton , W.J. Tompkins . Quantitative investigation of QRS detection rules using MIT/BIH Arrhythmia database. IEEE Trans. Biomed. Eng. , 12 , 1157 - 1165
    12. 12)
      • Hamdaoui, K., Charef, A.: `A new discritization method for the fractional order differentiator via bilinear and backward transformations', Proc. Int. Conf. Modeling and Simulation (MS'07), 2–4 July 2007, Algiers, Algeria.
    13. 13)
      • Szilàgy, L., Benyo, Z.S., Szilagyi, M., Szlavecz, A., Nagy, L.: `On-line QRS complex detection using wavelet filtering', Proc. – 23rd Annual Conf. – IEEE/EMBS, 2001, Istanbul, Turkey, p. 25–28.
    14. 14)
      • A. Goutas , Y. Ferdi , J-P. Herbeuval , M. Boudraa , B. Boucheham . Digital fractional order differentiation-based algorithm for P and T-waves detection and delineation. ITBM-RBM , 127 - 132
    15. 15)
      • O. Pahlm , L. Sömmo . Software QRS detection in ambulatory monitoring – a review. Med. Biol. Eng. Comput. , 289 - 297
    16. 16)
      • Lee, J., Jeong, K., Yoon, J., Lee, M.: `A simple real-time QRS detection algorithm', 18thAnn. Int. Conf. IEEE Eng. Med. Bio. Soc., 1996, Amsterdam, 4, p. 1396–1398.
    17. 17)
      • Schuck, A., Wisbeck, J.O.: `QRS detector pre-processing using the complex wavelet transform', Proc. 25th Ann. Int. Conf. – IEEE/EMBS Cancun, 17–21 September 2003, Mexico.
    18. 18)
      • P.J. Torvik , R.L. Bagley . On the appearance of the fractional derivative in the behavior of real materials. ASME J. Appl. Mech. , 294 - 298
    19. 19)
      • A. Charef , H.H. Sun , Y.Y. Tsao , B. Onaral . Fractal system as represented by singularity function. IEEE Trans. Automatic Control , 9 , 1465 - 1470
    20. 20)
      • C-C. Tseng . Design of variable and adaptive fractional order FIR differentiators. Signal Process. , 10 , 2554 - 2566
    21. 21)
      • Y.Q. Chen , K.L. Moore . Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Cir. Syst. , 363 - 367
    22. 22)
      • Q. Xue , Y.H. Hu , W.J. Tomkins . Neural-network-based adaptive matched filtering for QRS detection. IEEE Trans. Biomed. Eng. , 4 , 317 - 329
    23. 23)
      • Oustaloup, A.: La Dérivation Non Entière: Théorie, Synthèse et Applications. Editions Hermes, 1995.
    24. 24)
      • D. Sierociuk , A. Dzielinski . Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comput. Sci. , 1 , 129 - 140
    25. 25)
      • K. Ogata . (1995) Discrete-time control systems.
    26. 26)
      • J. Pan , W. Tompkins . A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. , 3 , 230 - 236
    27. 27)
      • H.H. Sun , A. Charef . Fractal systems: a time domain approach. Ann. Biomed. Eng. , 597 - 621
    28. 28)
      • S-W. Chen , H-C. Chen , H.-L. Chan . A real-time QRS detection method based on moving-averaging incorporating with wavelet denoising. Comput. Meth. Prog. Biomed. , 187 - 195
    29. 29)
      • M. Kunt , H. Rey , A. Ligtenberg . Preprocessing of electrocardiograms by digital techniques. Signal Process. , 215 - 222
    30. 30)
      • J.S. Sahambi , S.N. Tandon , R.K.P. Bhatt . Using wavelet transforms for ECG characterization. IEEE Eng. Med. Biol. Mag. , 1 , 77 - 83
    31. 31)
      • H.H. Sun , B. Onaral . A unified approach to represent metal electrode polarization. IEEE Trans. Biomed. Eng. , 399 - 406
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2008.0094
Loading

Related content

content/journals/10.1049/iet-spr.2008.0094
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address