http://iet.metastore.ingenta.com
1887

Digital fractional order operators for R-wave detection in electrocardiogram signal

Digital fractional order operators for R-wave detection in electrocardiogram signal

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, we present an effective R-wave detection method in the QRS complex of the electrocardiogram (ECG) based on digital differentiation and integration of fractional order. The detection algorithm is performed in two steps. The pre-processing step is based on a fractional order digital band-pass filter whose fractional order is obtained by maximising the signal to noise ratio of the ECG signal, followed by a five points differentiator of fractional order 1.5 then the squaring transformation and the smoothing are used to generate peaks corresponding to the ECG parts with high slopes. The detection step is a new and simple strategy which is also based on fractional order operators for the localisation of the R waves. The MIT/BIH arrhythmia database is used to test the effectiveness of the proposed method. The algorithm has provided very good performance and has achieved about 99.86% of the detection rate for the standard database. The results obtained are presented, discussed and compared to the most recent and efficient R-wave detection algorithms.

References

    1. 1)
      • G.M. Fresen , T.C. Jannett , M.A. Jadallah , S.L. Yates , S.R. Quint , H.T. Nagle . A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomed. Eng. , 1 , 85 - 98
    2. 2)
      • C. Zheng , C. Li , C. Tai . Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. , 1 , 21 - 28
    3. 3)
      • Y. Ferdi , J.P. Herbeuval , A. Charef , B. Boucheham . R wave detection using fractional digital differentiation. ITBM-RBM , 5 , 273 - 280
    4. 4)
      • Lee, J., Jeong, K., Yoon, J., Lee, M.: `A simple real-time QRS detection algorithm', 18thAnn. Int. Conf. IEEE Eng. Med. Bio. Soc., 1996, Amsterdam, 4, p. 1396–1398.
    5. 5)
      • Q. Xue , Y.H. Hu , W.J. Tomkins . Neural-network-based adaptive matched filtering for QRS detection. IEEE Trans. Biomed. Eng. , 4 , 317 - 329
    6. 6)
      • J. Pan , W. Tompkins . A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. , 3 , 230 - 236
    7. 7)
      • P.S. Hamilton , W.J. Tompkins . Quantitative investigation of QRS detection rules using MIT/BIH Arrhythmia database. IEEE Trans. Biomed. Eng. , 12 , 1157 - 1165
    8. 8)
      • S-W. Chen , H-C. Chen , H.-L. Chan . A real-time QRS detection method based on moving-averaging incorporating with wavelet denoising. Comput. Meth. Prog. Biomed. , 187 - 195
    9. 9)
      • M. Ichise , Y. Nagayanagi , T. Kojima . An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. Electro. Anal. Chem. , 253 - 256
    10. 10)
      • H.H. Sun , B. Onaral . A unified approach to represent metal electrode polarization. IEEE Trans. Biomed. Eng. , 399 - 406
    11. 11)
      • P.J. Torvik , R.L. Bagley . On the appearance of the fractional derivative in the behavior of real materials. ASME J. Appl. Mech. , 294 - 298
    12. 12)
      • Oustaloup, A.: La Dérivation Non Entière: Théorie, Synthèse et Applications. Editions Hermes, 1995.
    13. 13)
      • Y.Q. Chen , K.L. Moore . Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Cir. Syst. , 363 - 367
    14. 14)
      • Ferdi, Y., Herbeuval, J.P., Charef, A.: `Variance reduction of prediction error using fractional digital differentiation: application to ECG signal processing', Proc. 23rd IEEE/EMBS Annual Conf., 2001, Istanbul, Turkey, p. 25–28.
    15. 15)
      • B. Mathieu , P. Melchior , A. Oustaloup , C. Ceyral . Fractional differentiation for edge detection. Signal Process. , 2421 - 2432
    16. 16)
      • A. Goutas , Y. Ferdi , J-P. Herbeuval , M. Boudraa , B. Boucheham . Digital fractional order differentiation-based algorithm for P and T-waves detection and delineation. ITBM-RBM , 127 - 132
    17. 17)
      • D. Sierociuk , A. Dzielinski . Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comput. Sci. , 1 , 129 - 140
    18. 18)
      • C-C. Tseng . Design of variable and adaptive fractional order FIR differentiators. Signal Process. , 10 , 2554 - 2566
    19. 19)
      • A. Charef . Analogue realization of fractional order integrator, differentiator and fractional PIλDμ controllers. IEE Proc. Control Theory Appl. , 6 , 714 - 720
    20. 20)
      • A. Charef , H.H. Sun , Y.Y. Tsao , B. Onaral . Fractal system as represented by singularity function. IEEE Trans. Automatic Control , 9 , 1465 - 1470
    21. 21)
      • K. Ogata . (1995) Discrete-time control systems.
    22. 22)
      • Hamdaoui, K., Charef, A.: `A new discritization method for the fractional order differentiator via bilinear and backward transformations', Proc. Int. Conf. Modeling and Simulation (MS'07), 2–4 July 2007, Algiers, Algeria.
    23. 23)
      • J.S. Sahambi , S.N. Tandon , R.K.P. Bhatt . Using wavelet transforms for ECG characterization. IEEE Eng. Med. Biol. Mag. , 1 , 77 - 83
    24. 24)
      • M. Kunt , H. Rey , A. Ligtenberg . Preprocessing of electrocardiograms by digital techniques. Signal Process. , 215 - 222
    25. 25)
      • Jané, R., Laguna, P., Caminal, P., Rix, H.: `Adaptive filtering of high-resolution ECG signals', IEEE Comp. Cardiol. Proc., 23–26 September 1990, Chicago, USA, p. 23–26.
    26. 26)
      • Szilàgy, L., Benyo, Z.S., Szilagyi, M., Szlavecz, A., Nagy, L.: `On-line QRS complex detection using wavelet filtering', Proc. – 23rd Annual Conf. – IEEE/EMBS, 2001, Istanbul, Turkey, p. 25–28.
    27. 27)
      • Schuck, A., Wisbeck, J.O.: `QRS detector pre-processing using the complex wavelet transform', Proc. 25th Ann. Int. Conf. – IEEE/EMBS Cancun, 17–21 September 2003, Mexico.
    28. 28)
      • B.-U. Kohler , C. Hennig , R. Orglmeister . The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. , 1 , 42 - 57
    29. 29)
      • O. Pahlm , L. Sömmo . Software QRS detection in ambulatory monitoring – a review. Med. Biol. Eng. Comput. , 289 - 297
    30. 30)
      • A.L. Goldberger , V. Bhargava , B.J. West , A.J. Mandel . On a mechanism of cardiac electrical stability, the fractal hypothesis. Biophys J. , 525 - 528
    31. 31)
      • H.H. Sun , A. Charef . Fractal systems: a time domain approach. Ann. Biomed. Eng. , 597 - 621
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2008.0094
Loading

Related content

content/journals/10.1049/iet-spr.2008.0094
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address