http://iet.metastore.ingenta.com
1887

Evolutionary optimised nonlinear function for linearisation of constant temperature anemometer

Evolutionary optimised nonlinear function for linearisation of constant temperature anemometer

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A simple software method to derive linearised output for constant temperature anemometer (CTA) is presented. The method uses a nonlinear ratiometric–logarithmic function, which consists of two parameters whose optimal values are determined by minimising the objective function (mean square error) to improve the linearity of CTA signal. Covariance matrix adopted evolutionary strategy algorithm, which generates optimal values consistently, is employed to determine the optimal values of linearisation parameters. The proposed linearisation algorithm was implemented using LabVIEW 7.1 Professional Development System in a personal computer that provides the facility to interface with the National Instruments data acquisition module PCMCIA-NI DAQCard-6024E. Experimental studies have been carried out using practical air-flow velocity measurement data obtained form Dantec Dynamics practical guide. The performance measures such as full-scale error and root mean square error are considered to compare the performance of the proposed method with the methods reported for linearisation of transducers. Experimental results reveal that the proposed evolutionary optimised nonlinear function-based software lineariser works well for CTA, and it can be suitable for computer-based flow measurement/control systems.

References

    1. 1)
      • E.O. Doebelin . (1990) Measurements systems—application and design.
    2. 2)
      • A.E. Perry . (1982) Hot wire anemometry.
    3. 3)
      • C.G. Lomas . (1982) Fundamentals of hot-wire anemometry.
    4. 4)
      • J.P. Bentley . (1997) Principles of measurement systems.
    5. 5)
      • R.J. Goldstein . (1996) Fluid mechanic measurements.
    6. 6)
    7. 7)
    8. 8)
      • L.V. King . On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Proc. R. Soc. Lond. , 563 - 570
    9. 9)
    10. 10)
      • De Graaf, G., Wolffenbuttel, R.F.: `A systematic approach for sensor bridge linearisation and readout', Proc. Instrumentation and Measurement Technology Conference (IMTC), 2004, p. 1551–1555.
    11. 11)
    12. 12)
      • G.E. Iglesias , E.A. Iglesias . Linearization of transducer signal using analog to digital converter. IEEE Trans. Instrum. Meas. , 53 - 57
    13. 13)
      • S. Kaliyugavaradan , P. Sankaran , V.G.K. Murti . A new compensation scheme for thermistor and its implementation for response linearization over a wide temperature range. IEEE Trans. Instrum. Meas. , 952 - 956
    14. 14)
    15. 15)
      • A.A. Khan , R. Senguptha . A linear temperature/voltage converter using thermistor in logarithmic network. IEEE Trans. Instrum. Meas. , 2 - 4
    16. 16)
      • S. Lanyi , M. Hruskovic . Linearization of inverse-capacitance based displacement transducers. Meas. Sci. Technol. , 77 - 81
    17. 17)
    18. 18)
    19. 19)
      • W.T. Bolk . A general digital linearizing method for transducer. J. Phys. E Sci. Instrum. , 61 - 64
    20. 20)
      • D. Flammini Marioli , A. Taroni . Application of an optimal look-up table to sensor data processing. IEEE Trans. Instrum. Meas. , 813 - 816
    21. 21)
    22. 22)
      • D. Ghosh , D. Patranabis . Software linearization of thermistor type nonlinearity. IEE Proc. G , 339 - 342
    23. 23)
    24. 24)
      • Attari, M., Boudjema, F., Heniche, M.: `Linearizing a thermistor characteristic in the range of zero to 100 degree c with two layer artificial neural networks', Proc. Instrumentation and Measurement Technology Conf. (IMTC) Integrating Intelligent Instrumentation and Control, 1995, p. 119–122.
    25. 25)
      • Dempsey, G.L., Alig, J.S., Redfield, D.E.: `Using analog neutral networks for control sensor linearization', Proc. 38th Midwest Symposium on Circuits and Systems 1, 1995, p. 73–76.
    26. 26)
      • Lucks, M.B., Oki, N.: `An analog implementation of radial basis function network appropriate for transducer linearizer', Proc. 42nd Midwest Symposium on Circuits and Systems 2, 1999, p. 1109–1112.
    27. 27)
      • N.J. Medrano-Marques , B. Martin-Del-Brio . Sensor linearization with neural networks. IEEE Trans. Instrum. Meas. , 1288 - 1290
    28. 28)
      • A. Chatterjee , S. Munshi . Application of ANN to thermistor based temperature measurement systems. Int. J. Knowl.-Based Intell. Eng. Syst. , 231 - 237
    29. 29)
      • Dias Pereira, J.M., Postolache, O., Silva Girão, P.: `A digitally programmable A/D converter for smart sensors applications', Proc. Instrumentation and Measurement Technology Conf. (IMTC), 2005, p. 156–159.
    30. 30)
      • Dias Pereira, J.M., Postolache, O., Silva Girão, P.: `Adaptive self-calibration algorithm for smart sensors linearization', Proc. Instrumentation and Measurement Technology Conf. (IMTC), 2005, p. 648–652.
    31. 31)
    32. 32)
      • D.B. Zivanovi , M.S. Arsi , J.R. Djordjevic . Two-stage piece-wise linearization method. Int. J. Model. Simul. , 4111 - 4120
    33. 33)
    34. 34)
      • F.E. Jorgensen . (2002) A practical guide: how to measure turbulence with hot-wire anemometers.
    35. 35)
      • T. Back , D.B. Fogel , Z. Michalewicz . (1997) Handbook of evolutionary computation.
    36. 36)
      • Hansen, N.: CMA-ES in MATLAB, available at: www.bionik.tuberlin.de/user/niko/cmaes_inmatlab.html.
    37. 37)
      • S. Basket , P.N. Suganathan , N.Q. Ngo , A. Alphones , R.T. Zheng . Design of triangular FBG filter for sensor applications using covariance matrix adopted evolution algorithm. Opt. Commun. , 716 - 722
    38. 38)
      • S. Franco . (2002) Design with operational amplifiers and analog integrated circuits.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt_20070048
Loading

Related content

content/journals/10.1049/iet-smt_20070048
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address