Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Understanding the thermal ageing performance of epoxy aluminium nitride nanocomposites through space charge studies and by LIBS analysis

Epoxy aluminium nitride (AlN) nanocomposites were prepared to understand the influence of thermal ageing on dielectric and space charge performance of the material. It is observed that the real relative permittivity values of epoxy AlN nanocomposites are higher than epoxy resin when wt% of AlN is >1 wt%. Also, the epoxy AlN nanocomposites depicted an increase in dielectric loss compared to the neat epoxy specimen. The space charge variations in the test specimens are analysed by adopting a pulse electro-acoustic technique. It is observed that the nanocomposites have lesser space charge in the bulk volume of insulating material compared with pure epoxy resin. Also, it is realised that the local electric field is less with nanocomposite material in both virgin and thermally aged specimens. The threshold electric field is observed to be lesser with epoxy resin compared to nanocomposites. Laser-induced breakdown spectroscopy (LIBS) analysis clearly indicates the reduction in plasma temperature with epoxy AlN nanocomposites compared to pure epoxy resin. Principle component analysis (PCA) has classified the nanocomposite materials having different filler concentrations from the pure epoxy resin, qualitatively based on their LIBS spectra. Thermally aged epoxy AlN nanocomposites are successfully classified from unaged nanocomposite specimens, using PCA.

References

    1. 1)
      • 17. Tanaka, T., Kozako, M., Fuse, N., et al: ‘Proposal of a multi-core model for polymer nanocomposite dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (4), pp. 669681.
    2. 2)
      • 26. Wendel, T., Kindersberger, J., Hering, M.: ‘Influence of field strength and temperature on the space charge distribution in epoxy under DC stress’. 2018 IEEE Int. Conf. High Voltage Engineering Application, Athens, Greece, 2018, pp. 14.
    3. 3)
      • 22. Singha, S., Thomas, M.J.: ‘Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz–1 GHz’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (1), pp. 211.
    4. 4)
      • 14. Wang, N., Wang, X., Chen, P., et al: ‘Metal contamination distribution detection in high-voltage transmission line insulators by laser-induced breakdown spectroscopy (LIBS)’, Sensors (Basel), 2018, 18, (8), p. 2623.
    5. 5)
      • 33. Peddamallu, N., Nagaraju, G., Sridharan, K., et al: ‘Understanding the electrical, thermal, and mechanical properties of epoxy magnesium oxide nanocomposites’, IET Sci. Meas. Technol., 2019, 13, (5), pp. 632639.
    6. 6)
      • 30. Mazzanti, G., Montanari, G.C., Alison, J.M.: ‘A space-charge based method for the estimation of apparent mobility and trap depth as markers for insulation degradation-theoretical basis and experimental validation’, IEEE Trans. Dielectr. Electr. Insul., 2003, 10, (2), pp. 187197.
    7. 7)
      • 27. Li, Y., Tian, M., Lei, Z., et al: ‘Effect of nano-silica on dielectric properties and space charge behavior of epoxy resin under temperature gradient’, J. Phys. D. Appl. Phys., 2018, 51, (12), p. 125309.
    8. 8)
      • 18. Oki, Y., Takao, T., Nomura, T., et al: ‘UV-laser ablation spectroscopy in element analysis of solid surface’, Opt. Rev., 1998, 5, (4), pp. 242246.
    9. 9)
      • 12. Yan, J., Huang, Y., Yan, Y., et al: ‘High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@ C microspheres’, ACS Appl. Mater. Interfaces, 2019, 11, (43), pp. 4078140792.
    10. 10)
      • 28. Das, S., Gupta, N., Preparation, A.S.: ‘Effect of thermal and humidity ageing on space charge accumulation in epoxy resin’. 2013 IEEE Int. Conf. Solid Dielectric, Bologna, Italy, 2013, pp. 456459.
    11. 11)
      • 24. He, M., Qiang, D., Liu, N., et al: ‘Investigation of charge injection threshold field in epoxy resin’. 33rd Electrical Insulation Conf. (EIC 2015), Seattle, WA, USA, 2015, pp. 4952.
    12. 12)
      • 20. Roy, M., Nelson, J.K., MacCrone, R.K., et al: ‘Polymer nanocomposite dielectrics-the role of the interface’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (4), pp. 629643.
    13. 13)
      • 8. Zhou, H.Y., Ma, G.M., Li, C.R., et al: ‘Impact of temperature on surface charges accumulation on insulators in SF6-filled DC-GIL’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (1), pp. 601610.
    14. 14)
      • 9. Ahmed, N.H., Srinivas, N.N.: ‘Review of space charge measurements in dielectrics’, IEEE Trans. Dielectr. Electr. Insul., 1997, 4, (5), pp. 644656.
    15. 15)
      • 2. Bolon, D.A.: ‘Epoxy chemistry for electrical insulation’, IEEE Electr. Insul. Mag., 1995, 11, (4), pp. 1018.
    16. 16)
      • 6. Lee, T., Park, J., Kim, J., et al: ‘Thermal properties and temperature distribution of epoxy composite with micro and nano AlN for molded transformer’. 2013 IEEE Int. Conf. on Solid Dielectrics (ICSD), 2013, pp. 927930.
    17. 17)
      • 11. Liu, P., Gao, S., Wang, Y., et al: ‘Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials’, Chem. Eng. J., 2020, 381, p. 122653.
    18. 18)
      • 16. Unnikrishnan, V.K., Choudhari, K.S., Kulkarni, S.D., et al: ‘Analytical predictive capabilities of laser induced breakdown spectroscopy (LIBS) with principal component analysis (PCA) for plastic classification’, RSC Adv., 2013, 3, (48), pp. 2587225880.
    19. 19)
      • 10. Liu, P., Zhang, Y., Yan, J., et al: ‘Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption’, Chem. Eng. J., 2019, 368, pp. 285298.
    20. 20)
      • 19. Lyu, X., Wang, H., Guo, Z., et al: ‘Dielectric properties of epoxy-Al2O3 nanocomposites’. 2016 IEEE Int. Conf. on Dielectrics (ICD)’, 2016, pp. 10811084.
    21. 21)
      • 13. Liu, P., Huang, Y., Yan, J., et al: ‘Magnetic graphene@ PANI@ porous TiO2 ternary composites for high-performance electromagnetic wave absorption’, J. Mater. Chem. C, 2016, 4, (26), pp. 63626370.
    22. 22)
      • 25. Saha, D., Anisimov, A.G., Groves, R.M., et al: ‘Epoxy-hBN nanocomposites: a study on space charge behavior and effects upon material’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (3), pp. 17181725.
    23. 23)
      • 3. David, E., Fréchette, M.: ‘Polymer nanocomposites – major conclusions and achievements’, IEEE Electr. Insul. Mag., 2013, 29, (6), pp. 2936.
    24. 24)
      • 4. Zhong, S., Dang, Z., Zhou, W., et al: ‘Past and future on nanodielectrics’, IET Nanodielectr., 2018, 1, (February), pp. 4147.
    25. 25)
      • 31. Preetha, P., Thomas, M.J., Ranjan, R.: ‘Electrothermal ageing of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (6), pp. 20812089.
    26. 26)
      • 32. Liu, N., Zhou, C., Chen, G., et al: ‘Determination of threshold electric field for charge injection in polymeric materials’, Appl. Phys. Lett., 2015, 106, (19), p. 192901.
    27. 27)
      • 34. Malinowski, E.R.: ‘Factor analysis in chemistry’ (John Wiley & Sons, Ltd, USA, 2002, 3rd edn.).
    28. 28)
      • 15. Wang, X., Hong, X., Chen, P., et al: ‘Surface hardness analysis of aged composite insulators via laser-induced plasma spectra characterization’, IEEE Trans. Plasma Sci., 2019, 47, (1), pp. 387394.
    29. 29)
      • 7. Huang, X., Iizuka, T., Jiang, P., et al: ‘Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites’, J. Phys. Chem. C, 2012, 116, (25), pp. 1362913639.
    30. 30)
      • 23. Wang, Q., Chen, G.: ‘Effect of nanofillers on the dielectric properties of epoxy nanocomposites’, Adv. Mater. Res., 2012, 1, (1), pp. 93107.
    31. 31)
      • 1. Ellis, M.B.: ‘Chemistry and technology of epoxy resins’ (Blackie Academic & Professional, UK, 1993).
    32. 32)
      • 29. Katayama, J., Ohki, Y., Fuse, N., et al: ‘Effects of nanofiller materials on the dielectric properties of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (1), pp. 157165.
    33. 33)
      • 21. Peng, W., Huang, X., Yu, J., et al: ‘Electrical and thermophysical properties of epoxy/aluminum nitride nanocomposites: effects of nanoparticle surface modification’, Compos. A, Appl. Sci. Manuf., 2010, 41, (9), pp. 12011209.
    34. 34)
      • 5. Tanaka, T., Imai, T.: ‘Advanced nanodielectrics: fundamentals and applications’ (CRC Press, USA, 2017).
    35. 35)
      • 35. Clegg, S.M., Sklute, E., Dyar, M.D., et al: ‘Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques’, Spectrochim. Acta B, At. Spectrosc., 2009, 64, (1), pp. 7988.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2020.0342
Loading

Related content

content/journals/10.1049/iet-smt.2020.0342
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address