access icon openaccess Virtual element method and permanent magnet simulations: potential and mixed formulations

The methodological background of the virtual element method is presented and applied to model permanent magnets via the Kikuchi formulation, considering both linear and non-linear magnetic permeability of the ferromagnetic regions. The authors examine several study cases: a permanent magnet in free space, a permanent magnet energising a ferromagnetic core, a four-pole permanent-magnet motor. In order to validate the proposed approach, comparisons with both virtual and finite element potential formulations are presented and discussed.

Inspec keywords: synchronous machines; permanent magnet machines; permanent magnet motors; machine theory; magnetic permeability; finite element analysis

Other keywords: finite element potential formulations; virtual element potential formulations; virtual element method; Kikuchi formulation; permanent magnet simulations; four-pole permanent-magnet motor; mixed formulations

Subjects: Magnetization curves, hysteresis, Barkhausen and related effects; Numerical approximation and analysis; Numerical analysis; Finite element analysis; Synchronous machines

References

    1. 1)
      • 4. Beirão.da Veiga, L., Brezzi, F., Cangiani, A., et al: ‘Basic principles of virtual element methods’, Math. Models Methods Appl. Sci., 2013, 23, (1), pp. 199214.
    2. 2)
      • 15. Mentor.Graphics, A.S.B.: ‘Magnet, version 7.9’. Available at: https://www.mentor.com/products/mechanical/magnet/magnet/.
    3. 3)
      • 20. Bermúdez, A., Rodríguez, A., Villar, I.: ‘Extended formulas to compute resultant and contact electromagnetic force and torque from Maxwell stress tensors’, IEEE Trans. Magn., 2016, 53, (4), pp. 19.
    4. 4)
      • 6. da Veiga, L.B., Lovadina, C., Vacca, G.: ‘Virtual elements for the Navier–Stokes problem on polygonal meshes’, SIAM J. Numer. Anal., 2018, 56, (3), pp. 12101242. Available at: https://doi.org/10.1137/17m1132811.
    5. 5)
      • 9. Berrone, S., Borio, A., Pieraccini, S., et al: ‘New strategies for the simulation of the flow in three dimensional poro-fractured media’. European Conf. on Numerical Mathematics and Advanced Applications, Voss, Norway, 2017, pp. 715723.
    6. 6)
      • 2. da Veiga, L.B., Russo, A., Vacca, G.: ‘The virtual element method with curved edges’, ESAIM: Math. Model. Numer. Anal., 2019, 53, (2), pp. 375404. Available at: https://doi.org/10.1051/m2an/2018052.
    7. 7)
      • 10. Ahmad, B., Alsaedi, A., Brezzi, F., et al: ‘Equivalent projectors for virtual element methods’, Comput. Math. Appl., 2013, 66, (3), pp. 376391.
    8. 8)
      • 5. Vacca, G.: ‘An H1at-conforming virtual element for Darcy and Brinkman equations’, Math. Models Methods Appl. Sci., 2017, 28, (1), pp. 159194. Available at: https://doi.org/10.1142/s0218202518500057.
    9. 9)
      • 1. da Veiga, L.B., Dassi, F., Russo, A.: ‘High-order virtual element method on polyhedral meshes’, Comput. Math. Appl., 2017, 74, (5), pp. 11101122. Available at: https://doi.org/10.1016/j.camwa.2017.03.021.
    10. 10)
      • 11. Kikuchi, F.: ‘Mixed formulations for finite element analysis of magnetostatic and electrostatic problems’, Jpn. J. Appl. Math., 1989, 6, pp. 209221.
    11. 11)
      • 23. Buffa, A., Maday, Y., Rapetti, F.: ‘A sliding mesh-mortar method for a two dimensional eddy currents model of electric engines’, ESAIM: Math. Model. Numer. Anal.-Modélisation Mathématique et Analyse Numérique, 2001, 35, (2), pp. 191228.
    12. 12)
      • 12. Reece, A.B.J., Preston, T.W.: ‘Finite element methods in electrical power engineering’ (Courier Corporation, USA, 2000).
    13. 13)
      • 18. Di Barba, P., Perugia, I., Savini, A.: ‘Recent experiences on mixed finite elements for 2d simulations of magnetic fields’, COMPEL – Int. J. Comput. Math. Electr. Electron. Eng., 1998, 17, pp. 674681.
    14. 14)
      • 16. Bossavit, A.: ‘Computational electromagnetism: variational formulations, complementarity, edge elements’ (Academic Press, USA, 1998).
    15. 15)
      • 3. Dassi, F., Fumagalli, A., Losapio, D., et al: ‘The mixed virtual element method on curved edges in two dimensions’, 2020. arXiv:2007.13513.
    16. 16)
      • 22. Maday, Y., Mavriplis, C., Patera, A.: ‘Nonconforming mortar element methods: application to spectral discretizations’ (NASA Technical Reports Server, USA, 1988).
    17. 17)
      • 13. da Veiga, L.B., Brezzi, F., Dassi, F., et al: ‘Virtual element approximation of 2d magnetostatic problems’, Comput. Methods Appl. Mech. Eng., 2017, 327, pp. 173195. Advances in Computational Mechanics and Scientific Computation-the Cutting Edge. Available at: http://www.sciencedirect.com/science/article/pii/S0045782517305935.
    18. 18)
      • 19. Silvester, P.P., Ferrari, R.L.: ‘Finite elements for electrical engineers’ (Cambridge University Press, UK, 1996).
    19. 19)
      • 21. Bianchi, N.: ‘Electrical machine analysis using finite elements’ (CRC Press, USA, 2017).
    20. 20)
      • 8. Mascotto, L.: ‘Ill-conditioning in the virtual element method: stabilizations and bases’, Numer. Methods Partial Diff. Equ., 2018, 34, (4), pp. 12581281.
    21. 21)
      • 7. Berrone, S., Borio, A., Vicini, F.: ‘Reliable a posteriori mesh adaptivity in discrete fracture network flow simulations’, Comput. Methods Appl. Mech. Eng., 2019, 354, pp. 904931.
    22. 22)
      • 14. Di Barba, P., Savini, A., Wiak, S.: ‘Field models in electricity and magnetism’ (Springer Science & Business Media, USA, 2008).
    23. 23)
      • 17. Di Barba, P., Marini, L.D., Savini, A.: ‘Mixed finite elements in magnetostatics’, COMPEL – Int. J. Comput. Math. Electr. Electron. Eng., 1993, 12, pp. 113124.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2020.0322
Loading

Related content

content/journals/10.1049/iet-smt.2020.0322
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading