Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Influences of low temperature on internal gas-filled cavity discharges in EPR cable termination and its feature factors analysis

Ethylene–propylene rubber (EPR) cable is the most commonly used type in high-speed railway. Several flashover accidents take place in cable termination in an extremely cold environment. In this study, EPR cable terminations were tested in a simulated low-temperature system with varied applied voltages. The results showed that the differences in elastic modulus and free space volume between EPR insulation and stress control tube (SCT) in a frigid environment would lead to structural defects between them. Damages on the EPR insulation occurred in the form of flashover point when the ambient temperature declined to −30°C and below, with the growth rate of discharge and resulting extent of damage across the EPR/SCT interface being non-linearly related to ambient temperature. Besides, the partial discharge (PD) initial voltage and PD extinction voltage under low-temperature conditions reduced by >40% compared with those at 20°C. The flashover probability of EPR terminations increased significantly, and the shape characteristics of PD patterns have also changed obviously at low temperatures. It can be verified that under the high-voltage and low-temperature conditions, the EPR/SCT interface is prone to organisational mismatch, which will lead to the PD phenomenon and seriously affect the stable operation of EPR cable terminations.

References

    1. 1)
      • 8. Zhao, X., Yang, X., Gao, L., et al: ‘Tuning the potential distribution of AC cable terminal by stress cone of nonlinear conductivity material’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (5), pp. 26862693.
    2. 2)
      • 14. Catterson, V.M., Bahadoorsingh, S., Rudd, S., et al: ‘Identifying harmonic attributes from online partial discharge data’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 18111819.
    3. 3)
      • 25. Gao, S., Wang, Y., Liu, Z., et al: ‘Thermal distribution modeling and experimental verification of contact wire considering the lifting or dropping pantograph in electrified railway’, IEEE Trans Transp. Electrific., 2016, 2, (2), pp. 256265.
    4. 4)
      • 17. Du, B.X., Gu, L.: ‘Effect of interfacial pressure on tracking failure between XLPE and silicon rubber’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (6), pp. 19221930.
    5. 5)
      • 6. Bouguedad, D., Mekhaldi, A., Jbara, O., et al: ‘Physico-chemical study of thermally aged EPDM used in power cables insulation’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (6), pp. 32073215.
    6. 6)
      • 7. Bouguedad, D., Jbara, O., Rondot, S., et al: ‘Investigation of accelerated thermal aging of EPDM polymer by electric tests in air and by means of a SEM technique in high vacuum’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (3), pp. 981989.
    7. 7)
      • 3. Rizzi, A., Mascioli, F.M.F., Baldini, F., et al: ‘Genetic optimization of a PD diagnostic system for cable accessories’, IEEE Trans. Power. Deliv., 2009, 24, (3), pp. 17281738.
    8. 8)
      • 27. Dongsheng, Z., Yongsheng, H., Hongxin, L., et al: ‘Determination of the pressure distribution at the XLPE cable-rubber interface in a self-pressurized joint’, High Volt. Eng., 2007, 33, (5), pp. 173176(in Chinese).
    9. 9)
      • 20. Jaroszewski, M., Rakowiecki, K.: ‘Partial discharge inception voltage in transformer natural ester liquid — effect of the measurement method in the presence of moisture’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (4), pp. 24772482.
    10. 10)
      • 5. Montanari, G.C.: ‘An investigation on the thermal endurance of EPR model cables’, IEEE Trans. Electr. Insul., 1990, 25, (6), pp. 10461055.
    11. 11)
      • 21. Xu, Z., Li, J., Wang, K., et al: ‘Surface partial discharge and breakdown characteristics of oil-paper insulaton under −40°C condition’, Proc. CSEE., 2016, 30, (10), pp. 28272835(in Chinese).
    12. 12)
      • 10. Wang, X., Wang, C.C., Wu, K., et al: ‘An improved optimal design scheme for high voltage cable accessories’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (1), pp. 515.
    13. 13)
      • 28. Qi, B., Wei, Z., Li, C., et al: ‘Influences of different ratios of AC-DC combined voltage on internal gas cavity discharge in oil-pressboard insulation’, IEEE Trans. Power Deliv., 2016, 31, (3), pp. 10261033.
    14. 14)
      • 15. Li, L., Jiandong, W., Yi, Y., et al: ‘Effect of temperature on space charge trapping and conduction in cross-linked polyethylene’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (4), pp. 17841791.
    15. 15)
      • 11. Xia, W., Chencheng, W., Kai, W., et al: ‘New optimal design scheme for high voltage cable accessory’, J. Xi'an Jiaotong Univ., 2013, 47, (12), pp. 102109(in Chinese).
    16. 16)
      • 12. Lei, Z., Song, J., Tian, M., et al: ‘‘Partial discharges of cavities in ethylene propylene rubber insulation’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (4), pp. 16471659.
    17. 17)
      • 4. Mazzanti, G., Montanari, G.C., Simoni, L.: ‘Insulation characterization in multistress conditions by accelerated life tests: an application to XLPE and EPR for high voltage cables’, IEEE Electr. Insul. Mag., 1997, 13, (6), pp. 2434.
    18. 18)
      • 22. Zhou, K., Zhao, W., Tao, X.: ‘Toward understanding the relationship between insulation recovery and micro structure in water tree degraded XLPE cables’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (6), pp. 21352142.
    19. 19)
      • 19. IEC 60270-2015: ‘High-voltage test techniques – Partial discharge measurements’, 2015.
    20. 20)
      • 16. Florkowska, B., Roehrich, J., Zydron, P., et al: ‘Interaction of conductor with polymeric materials (XLPE/EPR) at partial discharges’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (6), pp. 21192127.
    21. 21)
      • 13. Lei, Z., Song, J., Geng, P., et al: ‘‘Influence of temperature on dielectric properties of EPR and partial discharge behavior of spherical cavity in EPR insulation’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (6), pp. 34883497.
    22. 22)
      • 24. Li, J., Jiang, T., Harrison, R.F., et al: ‘Recognition of ultra high frequency partial discharge signals using multi-scale features’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (4), pp. 14121420.
    23. 23)
      • 18. Suh, K.S., Nam, J.H., Kim, J.H., et al: ‘Interfacial properties of XLPE/EPDM laminates’, IEEE Trans. Dielectr. Electr. Insul., 2000, 7, (2), pp. 216221.
    24. 24)
      • 1. Katz, C., Seman, G.W., Bernstein, B.S.: ‘Low temperature aging of XLPE and EP insulation cables with voltage transients’, IEEE Trans. Power Deliv., 1995, 10, (1), pp. 3441.
    25. 25)
      • 9. He, J., Hu, J.: ‘Discussions on nonuniformity of energy absorption capabilities of ZnO varistors’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 15231532.
    26. 26)
      • 23. Cavallini, A., Xiaolin, C., Carlo, G., et al: ‘Diagnosis of EHV and HV transformer through an innovative partial-discharge-based technique’, IEEE Trans. Power Deliv., 2010, 25, (2), pp. 814824.
    27. 27)
      • 26. Du, B.X., Ma, Z.L., Gao, Y., et al: ‘Effect of ambient temperature on electrical treeing characteristics in silicone rubber’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (2), pp. 401407.
    28. 28)
      • 2. Ma, F., Xu, Q., He, Z., et al: ‘A railway traction power conditioner using modular multilevel converter and its control strategy for high-speed railway system’, IEEE Trans. Transp. Electrific., 2016, 2, (1), pp. 96109.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2020.0140
Loading

Related content

content/journals/10.1049/iet-smt.2020.0140
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address