access icon free Understanding and predicting the DC voltage endurance coefficient of cross-linked polyethylene insulation under thermal ageing

Voltage endurance coefficient (VEC) is a parameter used in the design of withstand test and insulation thickness of cross-linked polyethylene (XLPE) cables. Thermal ageing is inevitable in operation of cable, but the thermal ageing effect on the VEC is rarely considered. In this study, the trend of VEC of XLPE films under DC voltage during thermal ageing is investigated by 120 and 135°C thermal ageing experiments. The results show that, after 14 days of 120 and 135°C thermal ageing, the VEC decreases from 20.74 to 7.05 and 3.93, respectively. To understand the effect of thermal ageing on the VEC, the VEC is described as a function of the free energy increment which is proportional to the degree of polymerisation (DP) and the electric field. A simulation calculating the free energy increment of several molecular chains is conducted to confirm the proportional relationship between the free energy increment and the DP, the electric field. Based on the function of the VEC, a predicting method for the VEC under thermal ageing is developed. The experimental results of 120 and 135°C thermal ageing are used to confirm the preciseness of the proposed predicting method.

Inspec keywords: ageing; free energy; power cable insulation; XLPE insulation; insulation testing; polymerisation; electric fields

Other keywords: DC voltage endurance coefficient; molecular chains; XLPE cables; thermal ageing effect; VEC; degree of polymerisation; thermal ageing experiments; electric field; temperature 120.0 degC; time 14.0 d; temperature 135.0 degC; free energy increment; cross-linked polyethylene insulation; cross-linked polyethylene cables

Subjects: Power cables; Organic insulation

References

    1. 1)
      • 1. Montanari, G.C., Laurent, C., Teyssedre, G., et al: ‘From Ldpe to Xlpe: investigating the change of electrical properties. Part I. Space charge, conduction and lifetime’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (3), pp. 438446.
    2. 2)
      • 23. Iring, M., László-Hedvig, S., Kelen, T., et al: ‘Study of thermal oxidation of polyolefins. Vi. Change of molecular weight distribution in the thermal oxidation of polyethylene and polypropylene’, J. Polym. Sci., Polym. Symp., 1976, 57, (1), pp. 5563.
    3. 3)
      • 16. Bian, H., Yang, L., Yao, R., et al: ‘Method of selecting step stress test parameters for Xlpe insulation Dc voltage endurance coefficient’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (3), pp. 746753.
    4. 4)
      • 22. Cacciari, M., Montanari, G.C.: ‘Electrical life threshold models for solid insulating materials subjected to electrical and multiple stresses. Ii. Probabilistic approach to generalized life models’, IEEE Trans. Electr. Insul., 1992, 27, (5), pp. 987999.
    5. 5)
      • 12. Baccini, M., Westerweller, T., Kelley, N.: ‘200 kV Dc extruded cables crossing the San Francisco bay’, CIGRE 2010, 2010.
    6. 6)
      • 24. Rangarajan, P., Bhattacharyya, D., Grulke, E.: ‘Hdpe liquefaction: random chain scission model’, J. Appl. Polym. Sci., 2015, 70, (6), pp. 12391251.
    7. 7)
      • 5. TB 496: ‘Recommendations for testing Dc extruded cable systems for power transmission at a rated voltage up to 500 kV’, 2012.
    8. 8)
      • 18. ASTM 149: ‘Standard test method for dielectric breakdown voltage and dielectric strength of solid electrical insulating materials at commercial power frequencies’, 2003.
    9. 9)
      • 15. Kemari, Y., Mekhaldi, A., Teyssèdre, G., et al: ‘Correlations between structural changes and dielectric behavior of thermally aged Xlpe’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (6), pp. 18591866.
    10. 10)
      • 21. Parpal, J.L., Crine, J.P., Chinh, D.: ‘Electrical aging of extruded dielectric cables. A physical model’, IEEE Trans. Dielectr. Electr. Insul., 1997, 4, (2), pp. 197209.
    11. 11)
      • 2. Mazzanti, G.: ‘What have We still to learn about the inverse power model?’. 2016 IEEE Conf. on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 2016.
    12. 12)
      • 10. Ma, Z., Yang, L., Bian, H., et al: ‘An improved Ipm for life estimation of Xlpe under Dc stress accounting for space-charge effects’, IEEE Access, 2019, 7, pp. 157892157901.
    13. 13)
      • 4. IEC 60840: ‘Power cables with extruded insulation and their accessories for rated voltages above 30 kV (Um = 36 kV) up to 150 kV (Um = 170 kV) - test methods and requirements’, 2011.
    14. 14)
      • 19. IEC/TS 61251: ‘Electrical insulating materials – A.C. Voltage endurance evaluation – Introduction’, 2008.
    15. 15)
      • 3. IEC 62067: ‘Power cables with extruded insulation and their accessories for rated voltages above 150 kV (Um = 170 kV) up to 500 kV (Um = 550 kV) - test methods and requirements’, 2011.
    16. 16)
      • 13. Kemari, Y., Mekhaldi, A., Teguar, M.: ‘Experimental investigation and signal processing techniques for degradation assessment of Xlpe and Pvc/B materials under thermal aging’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (4), pp. 25592569.
    17. 17)
      • 11. Jeroence, M., Gustafsson, A., Berkvist, M.: ‘Hvdc light cable system extended to 320 kV’, CIGRE 2008, 2008.
    18. 18)
      • 14. Bessissa, L., Boukezzi, L., Mahi, D., et al: ‘Lifetime estimation and diagnosis of Xlpe used in Hv insulation cables under thermal ageing: arithmetic sequences optimised by genetic algorithms approach’, IET Gener. Transm. Distrib., 2017, 11, (10), pp. 24292437.
    19. 19)
      • 17. Tiwana, A.P.S., Reddy, C.C.: ‘Life estimation using damage equalization method and step-stress breakdown tests’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (4), pp. 23112318.
    20. 20)
      • 9. Wang, Y., Lv, Z., Wang, X., et al: ‘Estimating the inverse power law aging exponent for the Dc aging of Xlpe and its nanocomposites at different temperatures’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (6), pp. 35043513.
    21. 21)
      • 6. Kubota, T., Takahashi, Y., Sakuma, S., et al: ‘Development of 500 kV Xlpe cables and accessories for long distance underground transmission line-part I: insulation design of cables’, IEEE Trans. Power Deliv., 1994, 9, (4), pp. 17411749.
    22. 22)
      • 20. Bian, H., Yang, L., Ma, Z., et al: ‘Improved physical model of electrical lifetime estimation for crosslinked polyethylene Ac cable’, IEEE Trans. Dielectr. Electr. Insul., 2020, 27, (1), pp. 132139.
    23. 23)
      • 8. Su, Y., Liu, Y., Zhong, L.: ‘Evaluation of voltage endurance characteristics for new and aged Xlpe cable insulation by electrical treeing test’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (1), pp. 7280.
    24. 24)
      • 7. Suzuki, T., Kishi, K., Uozumi, T., et al: ‘Study on V-T characteristics for Xlpe cable’. Proc. of IEEE/PES Transmission and Distribution Conf., 1994.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2020.0131
Loading

Related content

content/journals/10.1049/iet-smt.2020.0131
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading