Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Effects of the charge carrier elimination process on oil conductivity decrease under high electric field intensity

The DC conductivity of insulating oil is key to converter transformers, in which AC and DC electrical fields simultaneously exist. Research on the influence of the electric field on oil conductivity can optimise the insulation design of converter transformers. Although numerous studies have been conducted on the conductance mechanism of non-polar liquids, the explicit mechanism and properties of oil conductivity under a high electrical field remain unclear. This study developed an optimised conductance model considering charge carrier elimination, dissociation, and charge injection process. Thereafter, the authors chose three types of oils for converter transformers and measured the variations in oil conductivity and ion mobility under different electric fields with 0–10 kV/mm range. The result indicates that ion mobility will increase under a high electric field owing to the EHD effects. The conductivity of the insulating oil follows a U-shaped pattern with an increasing electric field, thereby generally matching the optimised theoretical model. Therefore, the decrease in conductivity is mainly the result of the elimination process of free ions, whereas the increase is the result of the injection process that occurs on the electrodes.

References

    1. 1)
      • 2. Ramaian Thirugnanam, A.R.P., Maria Siluvairaj, W.I., Karthik, R.: ‘Performance studies on dielectric and physical properties of eco-friendly based natural ester oils using semi-conductive nanocomposites for power transformer application’, IET Sci., Meas. Technol., 2017, 12, (3), pp. 887898.
    2. 2)
      • 17. Charlé, K.P., Willig, F.: ‘Generalized one-dimensional Onsager model for charge carrier injection into insulators’, Chem. Phys. Lett., 1978, 57, (2), pp. 253258.
    3. 3)
      • 11. Alj, A., Denat, A., Gosse, J. P., et al: ‘Creation of charge carriers in nonpolar liquids’, IEEE Trans. Electr. Insul., 1985, 20, (2), pp. 221231.
    4. 4)
      • 23. NB/SH/T 0836–2010(In China): ‘Determination of acidity of insulating liquids – automatic potentiometric titration’, 2010.
    5. 5)
      • 7. Yasufuku, S., Umemura, T., Tanii, T.: ‘Electric conduction phenomena and carrier mobility behavior in dielectric fluids’, IEEE Trans. Electr. Insul., 2007, 14, (1), pp. 2835.
    6. 6)
      • 15. Pontiga, F., Castellanos, A.: ‘A field-dependent injection-dissociation model for electrical conduction in nonpolar liquids’, IEEE Ind. Appl. Conf., 1994, 3, pp. 16451652.
    7. 7)
      • 16. Dikarev, B., Karasev, G., Romanets, R., et al: ‘Modelling and experimental research of the non-stationary processes of conduction and space charge accumulation in dielectric liquids’. IEEE Int. Conf. Dielectr. Liq., Nara, Japan, 1999, pp. 3336.
    8. 8)
      • 21. NB/SH/T 0837–2010 (In China): ‘Mineral insulating oils – determination of kinematic viscosity at very low temperatures’, 2010.
    9. 9)
      • 6. Tobazéon, R., Filippini, J. C., Marteau, C. R.: ‘About the measurement of the conductivity of highly insulating liquids’. IEEE Int. Conf. Conduct. Breakdown Dielectr. Liq., Baden-Dattwil Switzerland, 1993, pp. 566571.
    10. 10)
      • 4. Yong, L., Longfu, L., Rehtanz, C., et al: ‘Study on characteristic parameters of a new converter transformer for hvdc systems’, IEEE Trans. Power Deliv., 2009, 24, (4), pp. 21252131.
    11. 11)
      • 12. Kurita, A., Takahashi, E., Ozawa, J., et al: ‘DC flashover voltage characteristics and their calculation method for oil-immersed insulation systems in HVDC transformers’, IEEE Trans. Power Deliv., 1986, 1, (2), pp. 184190.
    12. 12)
      • 1. Abd-Elhady, A.M., Ibrahim, M.E., Taha, T. A., et al: ‘Effect of temperature on ac breakdown voltage of nanofilled transformer oil’, IET Sci., Meas. Technol., 2017, 12, (1), pp. 138144.
    13. 13)
      • 18. Mishra, D., Haque, N., Baral, A., et al: ‘Assessment of interfacial charge accumulation in oil-paper interface in transformer insulation from polarization-depolarization current measurements’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (3), pp. 16651673.
    14. 14)
      • 13. Zhengyu, X.U.: ‘Real time test system and method of conduction characteristics of oil-paper insulation’, High Volt. Eng., 2015, 41, (1), pp. 231236.
    15. 15)
      • 5. CIGRE SC A2 and SC D1, JWG A2/D1.41: ‘TB 646 HVDC transformer insulation - recommendations for the measurement of DC oil-conductivity’, 2016.
    16. 16)
      • 14. Secker, P.E.: ‘Mobility measurements and charge carrier models for n-paraffin liquids’, Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom., 1969, 17, (4), pp. 13271335.
    17. 17)
      • 22. GB/T 507–2002(In China): ‘Insulating liquids – determination of the breakdown voltage at power frequency’, 2002.
    18. 18)
      • 24. IEC 60247–2004: ‘Insulating liquids – measurement of relative permittivity, dielectric dissipation factor (tan d) and d.c. resistivity’, 2004.
    19. 19)
      • 3. Matharage, B.S.H.M.S., Fernando, M.A.R.M., Bandara, M.A.A.P., et al: ‘Performance of coconut oil as an alternative transformer liquid insulation’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (3), pp. 887898.
    20. 20)
      • 8. Onsager, L.: ‘Deviations from Ohm's law in weak electrolytes’, J. Chem. Phys., 1934, 2, (9), pp. 599615.
    21. 21)
      • 20. GB/T 2013–2010(In China): ‘Standard test method for density of liquid petrochemical products’, 2010.
    22. 22)
      • 10. Kao, K.C.: ‘Theory of high-field electric conduction and breakdown in dielectric liquids’, IEEE Trans. Electr. Insul., 2007, 11, (4), pp. 121128.
    23. 23)
      • 19. Denat, A., Gosse, B., Gosse, J. P.: ‘Ion injections in hydrocarbons’, J. Electrost., 1979, 7, (79), pp. 205225.
    24. 24)
      • 9. Andre, D.: ‘Conduction and breakdown initiation in dielectric liquids’. IEEE Int. Conf. Dielectr. Liq., Trondheim, Norway, 2011, pp. 111.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2020.0123
Loading

Related content

content/journals/10.1049/iet-smt.2020.0123
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address