access icon free Partial discharge signal denoising method based on frequency spectrum clustering and local mean decomposition

Suppressing the background noise of partial discharge (PD) is one of the key issues for accurately diagnosing the state of electrical equipment insulation. To solve this problem, this study proposes a new denoising method based on frequency spectrum clustering and local mean value decomposition. First, the K-means clustering is employed on the frequency spectrum to pick out narrow-band interference frequencies. Next, the PD signal with white noise is decomposed by local mean decomposition into different product function components, and the components contain more information about time–frequency than the intrinsic mode functions originated from empirical mode decomposition. Besides, the adaptive threshold is utilised to eliminate white noise in the components. Finally, the denoised PD signal is synthesised by these denoised components. The proposed method and three traditional methods are applied to simulated and field-detected noisy PD signals, respectively. The results of the evaluation indicators confirm that the proposed method is better than the existing PD denoising methods.

Inspec keywords: time-frequency analysis; power apparatus; signal denoising; insulation testing; partial discharge measurement; Hilbert transforms; white noise; interference suppression; statistical analysis; pattern clustering

Other keywords: background noise; intrinsic mode functions; empirical mode decomposition; local mean value decomposition; K-means clustering; narrow-band interference frequencies; denoised PD signal; white noise; PD denoising methods; partial discharge signal denoising method; local mean decomposition; electrical equipment insulation; frequency spectrum clustering; denoised components

Subjects: Mathematical analysis; Dielectric breakdown and discharges; Other topics in statistics; Signal processing and detection; Insulation and insulating coatings; Charge measurement; Integral transforms; Production facilities and engineering; Electromagnetic compatibility and interference

References

    1. 1)
      • 1. Li, S., Li, J.: ‘Condition monitoring and diagnosis of power equipment: review and prospective’, High Volt., 2017, 2, (2), pp. 8291.
    2. 2)
      • 13. Hussein, R., Shaban, K.B., El.Hag, A.H.: ‘Wavelet transform with histogram-based threshold estimation for online partial discharge signal denoising’, IEEE Trans. Instrum. Meas., 2015, 64, (12), pp. 36013614.
    3. 3)
      • 27. Herold, C., Wenig, S., Leibfried, T.: ‘Advanced de-noising of power cable partial discharge signals by empirical mode decomposition’. 2010 20th Australasian Universities Power Engineering Conf., Christchurch, New Zealand, 2010, pp. 15.
    4. 4)
      • 25. Sun, J., Xiao, Q., Wen, J., et al: ‘Natural gas pipeline small leakage feature extraction and recognition based on LMD envelope spectrum entropy and SVM’, Measurement, 2014, 55, pp. 434443.
    5. 5)
      • 10. Soltani, A.A., Shahrtash, S.M.: ‘Decision tree-based method for optimum decomposition level determination in wavelet transform for noise reduction of partial discharge signals’, IET Sci. Meas. Technol., 2020, 14, (1), pp. 916.
    6. 6)
      • 9. Ma, X., Zhou, C., Kemp, I.J.: ‘Automated wavelet selection and thresholding for PD detection’, IEEE Electr. Insul. Mag., 2002, 18(2), (2), pp. 3745.
    7. 7)
      • 5. Govindarajan, S., Subbaiah, J., Cavallini, A., et al: ‘Development of hankel-SVD hybrid technique for multiple noise removal from PD signature’, IET Sci. Meas. Technol., 2019, 13, (8), pp. 10751084.
    8. 8)
      • 6. Khan, S.Z., Deheng, Z., Xianhe, J., et al: ‘A new adaptive technique for on-line partial discharge monitoring’, IEEE Trans. Dielectr. Electr. Insul., 1995, 2, (4), pp. 700707.
    9. 9)
      • 17. Abdel-Galil, T., El-Hag, A.H., Gaouda, A., et al: ‘De-noising of partial discharge signal using eigendecomposition technique’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (6), pp. 16571662.
    10. 10)
      • 16. Chan, J.C., Ma, H., Saha, T.K., et al: ‘Self-adaptive partial discharge signal de-noising based on ensemble empirical mode decomposition and automatic morphological thresholding’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (1), pp. 294303.
    11. 11)
      • 4. Altay, Ö., Kalenderli, Ö.: ‘Wavelet base selection for de-noising and extraction of partial discharge pulses in noisy environment’, IET Sci. Meas. Technol., 2014, 9, (3), pp. 276284.
    12. 12)
      • 11. Yuhui, Z., Weirun, D., Tianyun, L.: ‘A reverse separation method of suppressing periodic narrowband noise in partial discharge signal’, Trans. China Electr. Soc., 2015, 30, pp. 232239.
    13. 13)
      • 28. Donoho, D.L.: ‘De-noising by soft-thresholding’, IEEE Trans. Inf. Theory, 1995, 41, (3), pp. 613627.
    14. 14)
      • 20. Tang, J., Huang, J., Zhang, X., et al: ‘Suppression of the periodic narrow-band noise with mixed frequencies in partial discharge on-line monitoring’, Proc. CSEE, 2010, 30, (13), pp. 121127.
    15. 15)
      • 12. Liu, Y., Zhou, W., Li, P., et al: ‘An ultrahigh frequency partial discharge signal de-noising method based on a generalized S-transform and module time-frequency matrix’, Sensors, 2016, 16, (6), p. 941.
    16. 16)
      • 3. Long, J., Wang, X., Dai, D., et al: ‘Denoising of UHF PD signals based on optimised vmd and wavelet transform’, IET Sci. Meas. Technol., 2017, 11, (6), pp. 753760.
    17. 17)
      • 22. Hartigan, J.A., Wong, M.A.: ‘A k-means clustering algorithm’, J. R. Stat. Soc. Series C (Appl. Stat.), 1979, 28, (1), pp. 100108.
    18. 18)
      • 7. Sriram, S., Nitin, S., Prabhu, K., et al: ‘Signal denoising techniques for partial discharge measurements’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (6), pp. 11821191.
    19. 19)
      • 2. Hou, H., Sheng, G., Li, S., et al: ‘A novel algorithm for separating multiple pd sources in a substation based on spectrum reconstruction of UHF signals’, IEEE Trans. Power Deliv., 2014, 30, (2), pp. 809817.
    20. 20)
      • 23. Zhao, W., Ma, H., He, Q.: ‘Parallel k-means clustering based on mapreduce’. IEEE Int. Conf. on Cloud Computing, Berlin, Germany, 2009, pp. 674679.
    21. 21)
      • 15. Tang, Y.W., Tai, C.C., Su, C.C., et al: ‘A correlated empirical mode decomposition method for partial discharge signal denoising’, Meas. Sci. Technol., 2010, 21, (8), p. 085106.
    22. 22)
      • 18. Ashtiani, M.B., Shahrtash, S.M.: ‘Partial discharge de-noising employing adaptive singular value decomposition’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (2), pp. 775782.
    23. 23)
      • 21. Chen, T., Chien, S.: ‘Bandwidth adaptive hardware architecture of k-means clustering for video analysis’, IEEE Trans. Very Large Scale Integr. Syst., 2010, 18, (6), pp. 957966.
    24. 24)
      • 29. Xie, J., Lv, F., Li, M., et al: ‘Suppressing the discrete spectral interference of the partial discharge signal based on bivariate empirical mode decomposition’, Int. Trans. Electr. Energy Syst., 2017, 27, (10), p. e2407.
    25. 25)
      • 14. Huang, N.E., Shen, Z., Long, S.R., et al: ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis’, Proc. R. Soc. London series a: Math., Phy. Eng. Sci., 1998, 454, (1971), pp. 903995.
    26. 26)
      • 8. Luo, X., Niu, H., Wu, J.: ‘A modified method of suppressing narrow-band interference using FFT power spectrum’. 2013 IEEE Int. Conf. on Solid Dielectrics (ICSD), Bologna, Italy, 2013, pp. 8387.
    27. 27)
      • 24. Smith, J.S.: ‘The local mean decomposition and its application to EEG perception data’, J. R. Soc., Interface, 2005, 2, (5), pp. 443454.
    28. 28)
      • 26. Zhao, H., Wang, J., Han, H., et al: ‘A feature extraction method based on HLMD and MFE for bearing clearance fault of reciprocating compressor’, Measurement, 2016, 89, pp. 3443.
    29. 29)
      • 19. Zhou, K., Li, M., Li, Y., et al: ‘An improved denoising method for partial discharge signals contaminated by White noise based on adaptive short-time singular value decomposition’, Energies, 2019, 12, (18), p. 3465.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2020.0061
Loading

Related content

content/journals/10.1049/iet-smt.2020.0061
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading