access icon free Dielectric measurement of powdery materials using a coaxial transmission line

The following study investigates the use of a coaxial transmission line for determining the properties of powdery dielectric materials (1–10 GHz). Four powdery materials with dielectric constants ranging from 3.5 to 70 (SiO2, Al2O3, CeO2, and TiO2) were experimentally investigated at varying volume loading fractions. Powder particles were mixed with a paraffin matrix and properties of the powder were analysed using ten mixing equations to verify their accuracy. These powder-paraffin composites were also modelled at varying volume loadings for comparison with experimental data to gain a better understanding of the interactions between the different phases. The optimal volume loading fraction was determined to be 10% for all powders tested. A metric for selecting the most well-suited mixing equation was proposed that involved taking the ratio of the particle dielectric to that of the matrix. This study ultimately provides guidance for experimentally measuring the dielectric properties of unknown powdery materials that have applications for new devices that utilised powder-based dielectric materials.

Inspec keywords: titanium compounds; permittivity; powders; cerium compounds; silicon compounds; aluminium compounds; composite materials

Other keywords: frequency 1.0 GHz to 10.0 GHz; dielectric measurement; powder-paraffin composites; paraffin matrix; coaxial transmission line; volume loading fractions; powder-based dielectric materials; volume loadings; mixing equation; powdery dielectric materials; powder particles; dielectric constants; dielectric properties

Subjects: Dielectric permittivity; Powder techniques, compaction and sintering

References

    1. 1)
      • 7. Essa, K., Jamshidi, P., Zou, J., et al: ‘Porosity control in 316L stainless steel using cold and hot isostatic pressing’, Mater. Des., 2018, 138, (15), pp. 2129.
    2. 2)
      • 17. Samsonov, G.V.: ‘The oxide handbook’ (Springer, USA, 1982, 2nd edn.).
    3. 3)
      • 1. Musho, T.D., Wildfire, C., Houlihan, N.M., et al: ‘Study of Cu2O particle morphology on microwave field enhancement’, Mater. Chem. Phys., 2018, 216, pp. 278284.
    4. 4)
      • 18. Blakney, T.L., Weir, W.B.: ‘Automatic measurement of complex dielectric constant and permeability at microwave frequencies’, Proc. IEEE, 1975, 63, (1), pp. 203205.
    5. 5)
      • 10. Chung-Lun, L., Jenq-Gong, D., Bi-Shiou, C., et al: ‘Low-temperature sintering and microwave dielectric properties of anorthite-based glass-ceramics’, J. Eur. Ceram. Soc., 2002, 95, (8), pp. 22302235.
    6. 6)
      • 15. Kelly, J.M., Stenoien, J.O., Isbell, D.E.: ‘Wave-guide measurements in the microwave region on metal powders suspended in paraffin wax’, J. Appl. Phys., 1953, 24, (3), pp. 258262.
    7. 7)
      • 11. Alford, N. M. N., Penn, S. J.: ‘Sintered alumina with low dielectric loss’, J. Appl. Phys., 1996, 80, (10), pp. 58955898.
    8. 8)
      • 9. Wildfire, C., Sabolsky, E.M., Spencer, M.J., et al: ‘Solid-state synthesis of YAG powders through microwave coupling of oxide/carbon particulate mixtures’, Ceram. Int., 2017, 43, (14), pp. 1145511462.
    9. 9)
      • 20. Zangwill, A.: ‘Modern electrodynamics’ (Cambridge University Press, UK, 2013).
    10. 10)
      • 6. Donachie, M.JJr., Burr, M.F.: ‘Effects of pressing on metal powders’, J. Met., 1963, 14, pp. 849850.
    11. 11)
      • 21. Chen, W. S., Hsieh, M. Y.: ‘Dielectric constant calculation based on mixture equations of binary composites at microwave frequency’, Ceram. Int., 2017, 43, pp. S343S350.
    12. 12)
      • 2. Sphicopoulos, T., Teodoridis, V., Gardiol, F.: ‘Simple nondestructive method for the measurement of material permittivity’, J. Microw. Power, 1985, 20, (3), pp. 165172.
    13. 13)
      • 19. Sihvola, A.: ‘Electromagnetic mixing formulas and applications’ (IET, UK, 1999).
    14. 14)
      • 8. Sandi, D., Supriyanto, A., Jamaluddin, A., et al: ‘The effects of sintering temperature on dielectric constant of barium titanate (BaTiO3)’, IOP Conf. Ser. Mater. Sci. Eng., 2016, 107, (1), pp. 17.
    15. 15)
      • 3. Baker-jarvis, J., Janezic, M.D., Domich, P.D., et al: ‘Analysis of an open-ended coaxial probe with lift-off for nondestructive testing’, IEEE Trans. Instrum. Meas., 1994, 43, (5), pp. 711718.
    16. 16)
      • 4. Stuchly, M.A., Stuchly, S.S.: ‘Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies – a review’, J. Microw. Power, 1980, 43, (3), pp. 165172.
    17. 17)
      • 22. Jayasundere, N., Smith, B.V.: ‘Dielectric constant for binary piezoelectric 0–3 composites’, J. Appl. Phys., 1993, 73, (5), pp. 24622466.
    18. 18)
      • 23. Poon, Y.M., Shin, F.G.: ‘A simple explicit formula for the effective dielectric constant of binary 0–3 composites’, J. Mater. Sci., 2004, 39, (4), pp. 12771281.
    19. 19)
      • 13. Higasi, K.: ‘Dielectric investigation on coals. II. Mixture of coal powder and paraffin wax’, Bull. Chem. Soc. Jpn., 1957, 30, (5), p. 546.
    20. 20)
      • 5. Vattur Sundaram, M.: ‘Processing methods for reaching full density powder metallurgical materials’, 2017, p. 39.
    21. 21)
      • 16. Bartley, P.G., Begley, S.B.: ‘A new technique for the determination of the complex permittivity and permeability of materials’. IEEE Instrumentation & Measurement Technology Conf., Austin, TX, USA, 2010.
    22. 22)
      • 14. Dionne, G.F., Fitzgerald, J.F., Aucoin, R.C.: ‘Dielectric constants of paraffin-wax-TiO2 mixtures’, J. Appl. Phys., 1976, 47, (4), pp. 17081709.
    23. 23)
      • 12. Costa, A.M.L.M., Baroni, D.B., Lucas, C.S., et al: ‘Ultrasonic analysis of sintered alumina pellets’, May 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2020.0055
Loading

Related content

content/journals/10.1049/iet-smt.2020.0055
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading