Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Distribution system state estimation with stability assessment using bio-inspired computing

In the present day, there is an enormous demand in the supply of energy to all users. Since the voltage stability for the distribution system is not steady under any circumstances, therefore, to solve the problem of voltage instability the entire distribution system must simplified properly. Thus, some active support is provided for balancing the demand for electrical energy supply. Hence, the problem of voltage instability has been solved by considering phasor measuring units (PMUs) using antlion optimisation proposed in this study. The cost of PMU has been analysed along with other factors such as observability for effectively placing the PMUs with the identification of the weakest node. The problem is solved by using a non-linear model and the effectiveness of the proposed approach is tested using IEEE-15, IEEE-33, IEEE-69 Radial Distribution Systems and Croatia distribution grid. The result shows that the suggested algorithm is more effective in getting the optimal PMU placements considering multi-objective. Hence, the maiden state estimation values for distribution topologies are used.

References

    1. 1)
      • 6. Angioni, A., Lipari, G., Pau, M., et al: ‘A low-cost PMU to monitor distribution grids’. IEEE Int Work Appl Meas Power Syst. (AMPS), Liverpool, UK, 2017, pp. 16.
    2. 2)
      • 34. Cruz, M.A.R.S., Rocha, H.R.O., Paiva, M.H.M., et al: ‘An algorithm for cost optimization of PMU and communication infrastructure in WAMS’, Int. J. Electr. Power Energy Syst., 2019, 106, pp. 96104, available at https://doi.org/10.1016/j.ijepes.2018.09.020.
    3. 3)
      • 11. Aminifar, F., Fotuhi-Firuzabad, M., Safdarian, A., et al: ‘Observability of hybrid AC / DC power systems with Variable-cost PMUs’, IEEE Trans. Power Deliv., 2013, 29, (1), pp. 345352.
    4. 4)
      • 18. Goh, H.H., Chua, Q.S., Lee, S.W., et al: ‘Voltage stability indices in power system using artificial neural network’, Procedia Eng., 2015, 118, pp. 11271136.
    5. 5)
      • 29. Adebayo, I.G., Jimoh, A.A., Yusuff, A.A.: ‘Detection of weak bus through fast voltage stability Index and inherent structural characteristics of power system’. 4th Int. Conf. Electrical Power Energy Conversion System, Sharjah, United Arab Emirates, 2015, pp. 15.
    6. 6)
      • 35. U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, ‘Factors affecting PMU installation costs,’October 2014. [Online]. Available at: https://www.smartgrid.gov/document/factors_affecting_pmu_installation_costs.
    7. 7)
      • 32. Moghavvemi, M., Omar, F.M.: ‘Technique for contingency monitoring and voltage collapse prediction’, IEEE Proc. Gener. Transm. Distrib., 1998, 145, (6), pp. 634640.
    8. 8)
      • 38. Mohan, H., Pandit, M., Panigrahi, B.K.: ‘Electrical power and energy systems ant lion optimization for short-term wind integrated hydrothermal power generation scheduling’, Int. J. Electr. Power Energy Syst., 2016, 83, pp. 158174.
    9. 9)
      • 28. Sultana, S., Roy, P.K.: ‘Krill herd algorithm for optimal location of distributed generator in radial distribution system’, Appl. Soft Comput. J., 40, 2015, pp. 391404.
    10. 10)
      • 21. Acharjee, P.: ‘Identification of maximum loadability limit and weak buses using security constraint genetic algorithm’, Int. J. Electr. Power Energy Syst., 2012, 36, (1), pp. 4050.
    11. 11)
      • 41. IEEE PES AMPS DSAS Test Feeder Working Group. (2019, 02 September). Online Available at: http://sites.ieee.org/pes-testfeeders/.
    12. 12)
      • 22. Pujara, A.J.: ‘Voltage stability index of radial istribution network’. Int. Conf. Emerging Trends in Electrical and Computer Technology, Nagercoil, 2011, pp. 180185.
    13. 13)
      • 7. Ali, S., Kazmi, A., Shahzaad, M.K., et al: ‘Voltage stability Index for distribution network connected in loop configuration’, IETE J. Res., 2017, 63, (2), pp. 281293.
    14. 14)
      • 13. Abdelsalam, H.A., Abdelaziz, A.Y., Osama, R.A., et al: ‘Impact of distribution system reconfiguration on optimal placement of phasor measurement units’. Proc. of the 2014 Clemson University Power Systems Conf., Clemson, SC, USA, 11–14 March 2014, pp. 16.
    15. 15)
      • 10. Singh, S.P., Singh, S.P.: ‘Optimal cost wide area measurement system incorporating communication infrastructure’, IET Gener. Transm. Distrib., 2017, 11, (11), pp. 28142821.
    16. 16)
      • 36. Matsukawa, Y., Watanabe, M., Mitani, Y., et al: ‘Multi-objective PMU placement optimization considering the placement cost including the current channel allocation and state estimation accuracy’, Electr. Eng. Jpn., 2019, 207, pp. 2027.
    17. 17)
      • 39. Mirjalili, S.: ‘The ant lion optimizer’, Adv. Eng. Softw., 2015, 83, pp. 8098.
    18. 18)
      • 20. Marutheswar, G.V., vadivelu, K.R.: ‘Fast voltage stability Index based optimal reactive power planning using differential evolution’, Electr. Electron. Eng. Int. J., 2014, 3, (1), pp. 5160.
    19. 19)
      • 17. Ghamsari-yazdel, M., Esmaili, M.: ‘Electrical power and energy systems reliability-based probabilistic optimal joint placement of PMUs and flow measurements’, Int. J. Electr. Power Energy Syst., 2016, 78, pp. 857863.
    20. 20)
      • 1. Aravinth, A, Vatul, V.A., Narayanan, K., et al: ‘A multi-objective framework to improve voltage in a distribution network’, Int. J. Emerg. Electr. Power Syst., 2019, 20, (1), pp. 114.
    21. 21)
      • 23. Eminoglu, U., Hocaoglu, M.H.: ‘A voltage stability Index for radial distribution networks’. 42nd Int. Universities Power Engineering Conf., Brighton, 2007, pp. 408413.
    22. 22)
      • 16. Mazhari, S.M., Monsef, H., Lesani, H, et al: ‘A multi-objective PMU placement method considering measurement redundancy and observability value under contingencies’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 21362146.
    23. 23)
      • 31. Shahraeini, M., Ghazizadeh, M.S., Javidi, M.S.: ‘Co-measurement devices and their related communication infrastructure in wide area measurement systems’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 684691.
    24. 24)
      • 24. Musirin, I, Abdul Rahman, T.K.: ‘Novel fast voltage stability Index (FVSI) for voltage stability analysis in power transmission system’. Student Conf. Research Development Proc., Shah Alam, 2002, pp. 265268.
    25. 25)
      • 12. Zhou, X., Sun, H., Zhang, C., et al: ‘Optimal placement of PMUs using adaptive genetic algorithm considering measurement redundancy’, Int. J. Reliab. Qual. Saf. Eng., 2016, 23, p. 1640001.
    26. 26)
      • 30. Della Giustina, D., Pau, M., Pegoraro, P.A., et al: ‘Electrical distribution system state estimation: measurement issues and challenges’, IEEE Instrum. Meas. Mag., 2014, 17, (6), pp. 3642.
    27. 27)
      • 27. Injeti, S.K., Prema Kumar, N.: ‘A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large-scale radial distribution system’, Int. J. Electr. Power Energy Syst., 2013, 45, (1), pp. 142151.
    28. 28)
      • 19. Lozano, A.: ‘Evaluation of indices for voltage stability monitoring using PMU measurements’, Ing E Investig, 2014, 34, (3), pp. 4449.
    29. 29)
      • 33. Manousakis, N.M., Korres, G.N: ‘A weighted least squares algorithm for optimal PMU placement’, IEEE Trans. Power Syst., 2013, 28, pp. 34993500.
    30. 30)
      • 37. Mir Sayed Shah, D.: ‘Voltage stability in electric power system A practical Introduction’ (Logos Verlag Berlin., Germany, 2015, 2nd edn.).
    31. 31)
      • 25. Musirin, I., Abdul Rahman, T.K.: ‘Estimating Maximum loadability for weak bus identification using FVSI’, IEEE Power Eng. Rev., 2002, 22, (11), pp. 5052.
    32. 32)
      • 8. Pal, A., Vullikanti, A.K.S., Ravi, S.S.: ‘A PMU placement scheme considering realistic costs and modern trends in relaying’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 552561.
    33. 33)
      • 26. Moradi, M.H., Abedini, M.: ‘A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems’, Int. J. Electr. Power Energy Syst., 2012, 34, (1), pp. 6674.
    34. 34)
      • 5. Singh, K., Bhuyan, S., Kumar, M.N.: ‘Analysis of voltage stability in radial distribution system for hybrid microgrid’, Adv. smart Grid Renew., 2018, 435, pp. 4955.
    35. 35)
      • 40. Novoselnik, B., Bolfek, M., Boskovic, M., et al: ‘Electrical power distribution system reconfiguration: case study of a real-life grid in Croatia’, Int. Fed. Autom. Control Hosting, 2017, 50, (1), pp. 6166.
    36. 36)
      • 9. Rather, Z.H., Chen, Z., Thogersen, P., et al: ‘Realistic approach for phasor measurement unit placement: consideration of practical hidden costs’, IEEE Trans. Power Deliv., 2014, 30, (1), pp. 315.
    37. 37)
      • 3. Malleswari, V.N., Sekhar, K.C.: ‘Voltage stability analysis of radial distribution system considering distribution generation and composite load modelling’, Int. J. Appl. Eng. Res., 2018, 13, (19), pp. 1409514101.
    38. 38)
      • 4. Arabali, A., Ghofrani, M., Bassett, J.B., et al: ‘Optimum sizing and siting of renewable-energy-based DG units in distribution systems’ (Elsevier Ltd, Turkey, 2017).
    39. 39)
      • 14. Chen, X., Chen, T., Tseng, K.J., et al: ‘Customized optimal _PMU placement method for distribution networks’. Proc. of the 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Xi'an, China, 25–28 October 2016, pp. 135140.
    40. 40)
      • 2. Song, Y., Hill, D.J.L., Liu, T.: ‘Static voltage stability analysis of distribution systems based on network-load admittance ratio’, IEEE Trans. Power Syst., 2019, 34, (3), pp. 22702280.
    41. 41)
      • 15. Kong, X., Wang, Y., Yuan, X., et al: ‘Multi objective for PMU placement in compressed distribution network considering cost and accuracy of state estimation’, Appl. Sci., 2019, 9, (1515), pp. 122.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2020.0049
Loading

Related content

content/journals/10.1049/iet-smt.2020.0049
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address