access icon free Dielectric property characterisation of thin films based on iterative comparisons of full-wave simulations and measurements

A new research on characterising the dielectric constant and loss tangent of thin-film material with a convenient technique based on simulation is proposed. The authors utilise a set of full-wave electromagnetic simulation data to retrieve the dielectric properties from the measured data. More specifically, a set of simulation data is collected from a commercial full-wave simulator (Ansys HFSS) by solving the electromagnetic model the same as the measurement set-up which employs a grounded coplanar waveguide with a thin film placed on the top surface. The measured transmission coefficients (S21) are iteratively compared with its simulation data to estimate the dielectric constant and loss tangent using an efficient comparison algorithm. For adaptive data acquisitions and comparisons, they have developed a MATLAB code using hfss-matlab-toolbox that makes the whole process quick and automatic. They have successfully retrieved the dielectric properties of four different sprayed thin films at 8, 10, and 12 GHz, and observed that the dielectric constant and loss tangent strongly depends on their compositions, thickness, and frequency.

Inspec keywords: dielectric thin films; coplanar waveguides; strip lines; data acquisition; permittivity; dielectric losses

Other keywords: thin-film material; dielectric properties; dielectric property characterisation; frequency 8.0 GHz; electromagnetic model; measured transmission coefficients; commercial full-wave simulator; dielectric constant; data acquisitions; full-wave electromagnetic simulation data; dielectric loss tangent; grounded coplanar waveguide; Ansys HFSS; frequency 12.0 GHz; efficient comparison algorithm; frequency 10.0 GHz; full-wave simulations

Subjects: Waveguides and microwave transmission lines; Dielectric permittivity; Dielectric loss and relaxation; Dielectric thin films; Modelling and computer simulation of solid structure

References

    1. 1)
      • 9. Petrov, P.K., Alford, N.McN., Gevorgyan, S.: ‘Techniques for microwave measurements of ferroelectric thin films and their associated error and limitations’, Meas. Sci. Technol., 2005, 16, pp. 583589.
    2. 2)
      • 5. Nguyen, P.M., Chung, J.Y.: ‘Material properties characterization based on measurements of reflection coefficient and bandwidth’, J. Electromagn. Eng. Sci., 2014, 14, (4), pp. 382386.
    3. 3)
      • 6. Chao, L., Yu, B., Afsar, M.: ‘Complex permittivity of thin films at millimeter and THz frequencies’. IEEE 2011 Int. Conf. on Infrared, Millimeter, and Terahertz Waves, Houston, TX, USA, 2011, pp. 12.
    4. 4)
      • 7. Chung, B.K.: ‘A convenient method for complex permittivity measurement of thin materials at microwave frequencies’, J. Phys. D, Appl. Phys., 2006, 39, p. 1926.
    5. 5)
      • 23. RF-35TC Thermally Conductive Low Loss Laminate’. Available at http://www.taconic.co.kr/download/RF-35TC.pdf (accessed 08 June 2019).
    6. 6)
      • 24. Zain, M.Y.M.., Ali, M.T., Azlan, A.A., et al: ‘Electrical characterization of Bambusa vulgaris as a new microwave substrate’, J. Telecommun. Electron. Comput. Eng., 2018, 10, pp. 15.
    7. 7)
      • 14. Hu, J., Sligar, A., Chang, C.H., et al: ‘A grounded coplanar waveguide technique for microwave measurement of complex permittivity and permeability’, IEEE Trans. Magn., 2006, 42, pp. 19291931.
    8. 8)
      • 4. Radome Services LLC’. Available at https://www.radomeservices.com/what-is-a-radome/ (accessed 8 June 2019).
    9. 9)
      • 11. Güneşer, M.T., Atasoy, F.: ‘Extracting complex permittivity of materials by Gaussian process regression using the transmission parameter at sub-THz’, J. Electron. Mater., 2019, pp. 18.
    10. 10)
      • 8. Jin, H., Dong, S.R., Wang, D.M.: ‘Measurement of dielectric constant of thin film materials at microwave frequencies’, J. Electromagn. Waves Appl., 2009, 23, pp. 809817.
    11. 11)
      • 12. Janezic, M.D., Williams, D.F., Blaschke, V., et al: ‘Permittivity characterisation of low-k thin films from transmission-line measurements’, IEEE Trans. Microw. Theory Tech., 2003, 51, pp. 132136.
    12. 12)
      • 1. Khan, O., Meyer, J., Baur, K., et al: ‘Hybrid thin film antenna for automotive radar at 79 GHz’, IEEE Trans. Antennas Propog., 2017, 65, (10), pp. 50765085.
    13. 13)
      • 2. Lin, Y., Wu, H., Tai, T., et al: ‘Design of dual-band transparent antenna by using nano-structured thin film coating technology’. 2018 IEEE/MTT-S Int. Microwave Symp. (IMS), Philadelphia, PA, USA, 2018, pp. 359362.
    14. 14)
      • 21. Nawaz, M.I., Huiling, Z., Kashif, M.: ‘Substrate integrated waveguide (SIW) to microstrip transition at X-band’. Proc. 2014 Int. Conf. on Circuits, Systems and Control, Interlaken, Switzerland, 2014, pp. 6163.
    15. 15)
      • 19. Bronckers, L.A., Smolders, A.B.: ‘Broadband material characterization method using a CPW with a novel calibration technique’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 17631766.
    16. 16)
      • 18. Vicente, A.N., Dip, G.M., Junqueira, C.: ‘The step by step development of NRW method SBMO/IEEE MTT-S’. Int. Microwave and Optoelectronics Conf. (IMOC 2011), Natal, Brazil, 2011, pp. 738742.
    17. 17)
      • 22. Jargon, J.A., Marks, R.B., Rytting, D.K.: ‘Robust SOLT and alternative calibrations for four-sampler vector network analyzers’, IEEE Trans. Microw. Theory Tech., 1999, 47, pp. 20082013.
    18. 18)
      • 25. Phiri, R.R., Oladijo, O.P., Maledi, N., et al: ‘Effect of coating thickness on wear performance of inconel 625 coating’, IOP Conf. Ser., Mater. Sci. Eng., 2018, 423, p. 012159.
    19. 19)
      • 20. Sain, A., Melde, K.L.: ‘Impact of ground via placement in grounded coplanar waveguide interconnects’, IEEE Trans. Compon. Packag. Technol., 2015, 6, pp. 136144.
    20. 20)
      • 3. Lee, S., Choi, J.: ‘All-textile corrugated ground SIW horn antenna for millimeter wave WBAN applications’, J. Electromagn. Eng. Sci., 2019, 19, (4), pp. 221226.
    21. 21)
      • 26. Starkov, I.A., Starkov, A.S.: ‘The thickness dependence of dielectric permittivity in thin films’, J. Phys., Conf. Ser., 2016, 741, p. 012004.
    22. 22)
      • 16. Zhou, Z., Melde, K.L.: ‘A comprehensive technique to determine the broadband physically consistent material characteristics of microstrip lines’, IEEE Trans. Microw. Theory Tech., 2009, 58, (1), pp. 185194.
    23. 23)
      • 17. 6 Techniques for Measuring Dielectric Properties’. Available at https://content.sciendo.com/view/book/9783110455403/10.1515/9783110455403-007.xml (accessed 12 June 2019).
    24. 24)
      • 10. Easton, C.D., Jacob, M.V., Krupka, J.: ‘Non-destructive complex permittivity measurement of low permittivity thin film materials’, Meas. Sci.Technol., 2007, 18, p. 2869.
    25. 25)
      • 15. Lin, X., Seet, B.C.: ‘Dielectric characterisation at millimeter waves with hybrid microstrip-line method’, IEEE Trans. Instrum. Meas., 2017, 66, (11), pp. 31003102.
    26. 26)
      • 13. Zarral, L., Ndagijimana, F.: ‘Materials characterisation using a structure based on microstrip line’. IEEE 2011 11th Mediterranean Microwave Symp. (MMS), Hammamet, Tunisia, 2011, pp. 279281.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0583
Loading

Related content

content/journals/10.1049/iet-smt.2019.0583
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading