Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Influencing of water droplets on corona inception characteristics of composite insulator recorded by UV imager

Water droplets on the surface of insulators can distort the electric field and cause the generation of surface partial discharge or flashover. In this study, the inception and the development of surface partial discharges on a 110 kV composite insulator were evaluated by using a solar-blind ultraviolet imager. Several experiments were conducted by using water droplets differing in volume, conductivity, and position on an insulator housing. The results showed that the corona inception voltage decreases with the increasing volume of the water droplets. The relative permittivity of the water droplet decreases with the increase of the conductivity and then reduces the electric field intensity and increases the corona inception voltage. Installing the grading ring can increase the value of the corona inception voltage by 38% at most. To investigate the influence of the water droplets on the corona inception characteristics of the insulator, the sheath and shed models were proposed according to the feature of the electric field distribution. By changing the parameters of the water droplets, the corona inception voltage, discharge position, and electric field were analysed. Furthermore, the flashover voltage of the water droplets is influenced by its conductivity, while the corona inception voltage by its relative permittivity.

References

    1. 1)
      • 22. Shenghui, W., Fangchengl, L., Yunpeng, L.: ‘Estimation of discharge magnitude of composite insulator surface corona discharge based on ultraviolet imaging method’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (4), pp. 16971704.
    2. 2)
      • 8. Lin, Y., Jikai, B., Fei, Z., et al: ‘Effects of structure and material of polluted insulators on the wetting characteristics’, IET Sci. Meas. Technol., 2018, 13, (2), pp. 131138.
    3. 3)
      • 11. Ying, L., Ting, G., Pinging, D., et al: ‘Corona ageing characteristics of composite insulators based on orthogonal experiment’, IET Sci. Meas. Technol., 2019, 13, (2), pp. 303308.
    4. 4)
      • 26. Liangying, Z., Xi, Y.: ‘Dielectric physics’ (Xi'an Jiaotong University Press, China, 1991, 1st edn.).
    5. 5)
      • 18. Haoyang, C., Sijia, H., Hongwei, M., et al: ‘Effects of view angle and measurement distance on electrical equipment UV corona discharge detection’, Optik, 2018, 171, pp. 672677.
    6. 6)
      • 20. Zhiniu, X.: ‘Modified circle fitting algorithm and its application in hydrophobicity detection of silicone rubber’, High Volt. Eng., 2013, 39, (1), pp. 2430.
    7. 7)
      • 2. Yong, Z., Masahisa, O., Chikahisa, H., et al: ‘Corona discharge from water droplet on electrically stressed polymer surface’, Jpn. J. Appl. Phys., 2006, 45, (1A), pp. 234238.
    8. 8)
      • 5. Moreno, V., Gorur, R.S., Koroese, A.: ‘Impact of corona on the long-term performance of nonceramic insulators’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (5), pp. 913915.
    9. 9)
      • 6. Sarathi, R., Mishra, P., Gautam, R., et al: ‘Understanding the influence of water droplet initiated discharges on damage caused to corona-aged silicone rubber’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (4), pp. 24212431.
    10. 10)
      • 3. Zhikang, Y., Youping, T., Cong, W., et al: ‘Study on artificial multi-stress ageing characteristics of composite insulators’, IET Gener. Transm. Distrib., 2018, 12, (16), pp. 38623866.
    11. 11)
      • 25. Mohammad, H.N., Volker, H.: ‘Experimental investigations on water droplet oscillation and partial discharge inception voltage on polymeric insulating surfaces under the influence of AC electric field stress’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (2), pp. 443453.
    12. 12)
      • 24. Mohsen, M., Hamide, A.: ‘Measurement and modelling of static dielectric constants of aqueous solutions of methanol, ethanol and acetic acid at T = 293.15 K and 91.3 kPa’, J. Chem. Thermodyn., 2013, 57, pp. 6770.
    13. 13)
      • 23. Arthur, B.: ‘Dielectric constant of aqueous solutions of sodium chloride’, J. Franklin Inst., 1928, 205, (5), pp. 649657.
    14. 14)
      • 7. Yong, L., Boxue, D., Masoud, F.: ‘Characteristics of induced discharge on a polymer insulator surface under electro-wetting conditions’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 29582967.
    15. 15)
      • 19. Shenghui, W.: ‘Detection and assessment of contaminated suspension insulator discharge based on ultraviolet imaging’ (North China Electric Power University, People's Republic of China, 2011).
    16. 16)
      • 4. Densley, J., Bartnikas, R., Bernstein, B.S.: ‘Multi-stress ageing of extruded insulation systems for transmission cables’, IEEE Electr. Insul. Mag., 1993, 9, (1), pp. 1517.
    17. 17)
      • 14. Haifeng, G., Zhidong, J., Yingke, M., et al: ‘Effect of hydrophobicity on electric field distribution and discharges along various wetted hydrophobic surfaces’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (2), pp. 435443.
    18. 18)
      • 17. Shaotong, P., Yunpeng, L., Xinin, J., et al: ‘UV-flashover evaluation of porcelain insulators based on deep learning’, IET Sci. Meas. Technol., 2018, 12, (6), pp. 770776.
    19. 19)
      • 9. Aouabed, F., Bayadi, A., Boudissa, R.: ‘Flashover voltage of silicone insulating surface covered by water droplets under AC voltage’, Electr. Power Syst. Res., 2017, 143, pp. 6672.
    20. 20)
      • 15. Aouabed, F., Bayadi, A., Rahmani, E.A., et al: ‘Finite element modelling of electric field and voltage distribution on a silicone insulating surface covered with water droplets’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (2), pp. 413420.
    21. 21)
      • 12. Joseph, V.V., Thomas, M.J.: ‘Surface degradation of silicone rubber nanocomposites due to DC corona discharge’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (3), pp. 11751182.
    22. 22)
      • 21. Ailton, L.S., Ivan, J.S.L.: ‘Experimental investigation of corona onset in contaminated polymer insulators’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (2), pp. 13211331.
    23. 23)
      • 13. Zhicheng, G., Liming, W., Bo, Y., et al: ‘Electric field analysis of water drop corona’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 964969.
    24. 24)
      • 16. Wenjun, Z., Han, L., Xiao, Y., et al: ‘A criterion for UV detection of AC corona inception in a rod-plane air gap’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, pp. 232237.
    25. 25)
      • 1. Alok, R.V., Subba Reddy, B.: ‘Accelerated aging studies of silicon-rubber based polymeric insulators used for HV transmission lines’, Polym. Test., 2017, 62, pp. 124131.
    26. 26)
      • 10. Ying, L., Ting, G., Xingnian, W., et al: ‘Electric field intensity effects on the microstructural characteristics evolution of methyl vinyl silicone rubber via molecular simulation’, Molecules, 2018, 23, pp. 18611872.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0558
Loading

Related content

content/journals/10.1049/iet-smt.2019.0558
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address