Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Brain–computer technology-based training system in the field of motor imagery

The proposed training system helps the examined people to generate motor images based on the example maps of the activity of neuronal cell fractions presented to them. The study involved 16 students at the Laboratory of Neuroinformatics and Decision Systems of the Technical University of Opole. The group was divided into two equal subgroups, one of which was acquainted with the operation of the system, while the other – considered as a control – was not. Electroencephalographic signals were recorded when users were imagining the upper limb movement for two subgroups before and after the imagery training in order to verify the introduction of the proposed training system. The area used for data acquisition as part of the monitoring session implemented with the use of the Emotiv EPOC Flex device is a sensorimotor cortex. As it results from the carried-out literature analysis, it was the first attempt to use the 32-channel Emotive EPOC Flex device in the scope of the training system construction in the field of motor imagery.

References

    1. 1)
      • 19. Voznenko, T.I., Chepin, E.V., Urvanov, G.A.: ‘The control system based on extended BCI for a robotic wheelchair’, Procedia Comput. Sci., 2018, 123, pp. 522527, doi: https://doi.org/10.1016/j.procs.2018.01.079.
    2. 2)
      • 11. Perry, A., Bentin, S.: ‘Mirror activity in the human brain while observing hand movements: a comparison between EEG desynchronization in the mu-range and previous fMRI results’, Brain Res., 2009, 1282, pp. 126132, doi: https://doi.org/10.1016/j.brainres.2009.05.059.
    3. 3)
      • 16. Paszkiel, S.: ‘Using the raspberry PI2 module and the brain-computer technology for controlling a mobile vehicle’, In Szewczyk, R., Zielinski, C., Kaliczynska, M.Progress in automation, robotics and measurement techniques’ (Springer International, Switzerland, 2020), pp. 356366, doi: https://doi.org/10.1007/978-3-030-13273-6_34.
    4. 4)
      • 8. Bosak, M.: ‘Atlas of electroencephalography’ (Publishing House of the Jagiellonian University, Cracow, 2017).
    5. 5)
      • 9. Höller, Y., Bergmann, J., Kronbichler, M., et al: ‘Real movement vs. motor imagery in healthy subjects’, Int. J. Psychophysiol., 2013, 87, pp. 3541.
    6. 6)
      • 5. Giaquinto, S., Cobianchi, A., Macera, F., et al: ‘EEG recordings in the course of recovery from stroke’, Stroke, 1994, 25, pp. 22042209.
    7. 7)
      • 7. Kaur, B., Singh, D., Roy, P.P.: ‘EEG based emotion classification mechanism in BCI’, Procedia Comput. Sci., 2018, 132, pp. 752758.
    8. 8)
      • 3. Pfurtscheller, G., Sager, W., Wege, W.: ‘Correlations between CT scan and sensorimotor EEG rhythms in patients with cerebrovascular disorders’, Electroencephalogr. Clin. Neurophysiol., 1981, 52, pp. 473485.
    9. 9)
      • 17. Qin, Z., Li, Q.: ‘High rate BCI with portable devices based on EEG’, Smart Health, 2018, 9–10, pp. 115128, doi: https://doi.org/10.1016/j.smhl.2018.07.006.
    10. 10)
      • 22. Fox, N.A., Bakermans-Kranenburg, M.J., Yoo, K.H., et al: ‘Assessing human mirror activity with EEG mu rhythm: a meta-analysis’, Psychol. Bull., 2016, 142, pp. 291313.
    11. 11)
      • 15. Bensch, M, Karim, A.A., Mellinger, J.: ‘Nessi: an EEG-controlled web browser for severely paralyzed patients’, Comput. Intell. Neurosci., 2007, 2007, pp. 15.
    12. 12)
      • 10. Tabernig, C.B., Carrere, L.C., Lopez, C.A., et al: ‘EEG event-related desynchronization of patients with stroke during motor imagery of hand movement’, J. Phys., 2016, 705, pp. 14, https://doi.org/10.1088/1742-6596/705/1/012059.
    13. 13)
      • 20. Marcuse, L.V., Fields, M.C., Yoo, J.J.: ‘Basics of EEG with a mini-lab’ (Urban & Partner, Wroclaw, 2017, 2nd edn.).
    14. 14)
      • 1. Raciborski, F., Gujski, M., Gawińska, E., et al: ‘Strokes - a growing problem in an aging society’, Institute of Healthcare, Warszawa, 2016.
    15. 15)
      • 12. Scherer, R., Mohapp, A., Grieshofer, P., et al: ‘Sensorimotor EEG patterns during motor imagery in hemiparetic stroke patients’, Institute of Neural Engineering (7090), Int. J. Bioelectromagn., 2007, 9, pp. 155162.
    16. 16)
      • 14. Birbaumer, N, Hinterberger, T, Karim, A.A., et al: ‘Brain-computer communication using self-control of slow cortical potentials (SCP)’. Proc. of the 2nd Int. BCI Workshop and Training Course, Graz Austria, 2004, pp. 14.
    17. 17)
      • 13. Ghaemia, A., Rashedia, E., Mohammad Pourrahimib, A., et al: ‘Automatic channel selection in EEG signals for classification of left or right hand movement in brain computer interfaces using improved binary gravitation search algorithm’, Biomed. Signal Proc. Control, 2017, 33, pp. 109118.
    18. 18)
      • 4. Stępień, M., Conradi, J., Waterstraat, G., et al: ‘Event-related desynchronization of sensorimotor EEG rhythms in hemiparetic patients with acute stroke’, Neurosci. Lett., 2011, 488, pp. 1721, https://doi.org/10.1016/j.neulet.2010.10.072.
    19. 19)
      • 18. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., et al: ‘Brain-computer interfaces for communication and control’, Clin. Neurophysiol., 2002, 113, pp. 767791.
    20. 20)
      • 6. Leocani, L., Rovaris, M., Martinelli-Boneschi, F., et al: ‘Movement preparation is affected by tissue damage in multiple sclerosis: evidence from EEG event-related desynchronization’, Clin. Neurophysiol., 2005, 116, pp. 15151519.
    21. 21)
      • 23. Krusienski, D.J., Schalk, G., McFarland, D.J., et al: ‘A mu-rhythm matched filter for continuous control of a brain–computer interface’, IEEE Trans. Biomed. Eng., 2007, 54, pp. 273280.
    22. 22)
      • 21. Proverbio, A.M.: ‘Tool perception suppresses 10–12 Hz μ rhythm of EEG over the somatosensory area’, Biol. Psychol., 2012, 91, pp. 17, https://doi.org/10.1016/j.biopsycho.2012.04.003.
    23. 23)
      • 2. Guzik, A., Kwolek, A.: ‘The prevalence and distribution of multiple sclerosis in Poland and around the world’. Medical Review of the University of Rzeszów and the National Medicines Institute in Warsaw, (Publishing House of the University of Rzeszów, Poland, 2015), pp. 5562.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0522
Loading

Related content

content/journals/10.1049/iet-smt.2019.0522
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address