access icon free Analysis and design of defected ground structure for EMC improvement in mixed-signal transceiver modules

In this research, the return path discontinuity (RPD), located under the power amplifier (PA) substrate, of X-band transceiver module (Base), mounted on a four-layer printed circuit board (PCB), is investigated to improve the signal integrity by reducing the difference in the reference potential. This study is performed by initially employing the wirebond method, through the assessment of both numbers and sizes of bondwires by advanced design system (ADS). Six bondwires of 25 µm are added, producing an improvement of 6.82 dB for the reflection coefficient and 1.19 dB for the isolation and insertion loss. For further improvement, spiral shape defected ground structure (DGS) is implemented in the inner ground layer (layer 2) without using bond wires. The DGS simulation results illustrate an improvement of 3 dB for S 11 and 0.6 dB for S 12. To improve the electromagnetic compatibility (EMC), the authors propose combination and integration of both wirebond and DGS methods, called wirebond–DGS method, which results in an improvement of 11.86 dB for S 11, 1.34 dB for S 12 and S 21, and 12.03 dB for S 22. Finally, the wirebond–DGS RF module was fabricated and the measurement results exhibit an improvement of 8.07 dB for S 11 and 9.39 dB for S 22 in comparison with the fabricated Base module. In addition, 0.53 dB improvement for both S 12 and S 21 is also achieved.

Inspec keywords: transceivers; lead bonding; power amplifiers; electromagnetic compatibility; mixed analogue-digital integrated circuits; defected ground structures; microwave integrated circuits; printed circuits

Other keywords: DGS simulation; X-band transceiver module; EMC improvement; inner ground layer; reference potential; mixed-signal transceiver modules; power amplifier substrate; ADS; signal integrity; four-layer PCB; insertion loss; wirebond–DGS method; size 25.0 mum; return path discontinuity; RPD; wirebond–DGS RF module; spiral shape defected ground structure; electromagnetic compatibility; wirebond method; fabricated base module

Subjects: Semiconductor integrated circuits; Electromagnetic compatibility and interference; Microwave integrated circuits; Amplifiers; Microassembly techniques; Printed circuits; Waveguide and microwave transmission line components

References

    1. 1)
      • 20. Liu, H.-W.: ‘An improved 1D periodic defected ground structure for microstrip line’, IEEE Microw. Wirel. Compon. Lett., 2004, 14, (4), pp. 180182.
    2. 2)
      • 5. Karl-Heinz Gonschorek, R.V.: ‘Electromagnetic compatibility for device design and system integration’. Springer Science & Business Media, September 18, 2009.
    3. 3)
      • 21. Kiang, J.F.: ‘Novel technologies for microwave and millimeter wave applications’ (Kluwer Academic, Boston, MA, 2004), pp. 205206.
    4. 4)
      • 6. Bogar, J., Vanderheyden, E.: ‘Interconnection and circuit packaging for electromagnetic compatibility’, IEEE Trans. Compon. Hybrids Manuf. Technol., 1982, 5, (4), pp. 470478.
    5. 5)
      • 10. Kollia, V., Cangellaris, A.C.: ‘A domain decomposition approach for efficient electromagnetic analysis of the power distribution network of packaged electronic systems’, IEEE Trans. Electromagn. Compat., 2010, 52, (2), pp. 320331.
    6. 6)
      • 12. Apriyana, A.A.A., Zhang, Y.P., Chang, J.S., et al: ‘Single-pole multiple-throw switches with defected ground structure low-pass filter’, IET Microw. Antennas Propag., 2014, 8, (14), pp. 12411249.
    7. 7)
      • 22. Mohan, S.S., Hershenson, M., Boyd, S.P., et al: ‘Simple accurate expressions for planar spiral inductances’, IEEE J. Solid-State Circuits, 1999, 34, (10), pp. 14191424.
    8. 8)
      • 24. Bilotti, F.: ‘Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions’, IEEE Trans. Microw. Theory Tech., 2007, 55, (12), pp. 28652873.
    9. 9)
      • 15. Wu, T.-L.: ‘Overview of power integrity solutions on package and PCB: decoupling and EBG isolation’, IEEE Trans. Electromagn. Compat., 2010, 52, (2), pp. 346356.
    10. 10)
      • 31. Zeng, Z.: ‘A wideband common-mode suppression filter with compact-defected ground structure pattern’, IEEE Trans. Electromagn. Compat., 2015, 57, (5), pp. 12771280.
    11. 11)
      • 8. Chen, I.-F., Peng, C.-M., Hsue, C.-W.: ‘Circuit-concept approach to radiated emissions of printed circuit boards’, IEE Proc. Sci. Meas. Technol., 2004, 151, (3), pp. 205210.
    12. 12)
      • 11. Sadr, A., Masoumi, N.: ‘Lower cutoff frequency improvement of planar EBG-patterned PDN using edge termination’, Electron. Lett., 2015, 51, (16), pp. 12701272.
    13. 13)
      • 29. Gao, X.-K.: ‘A compact common-mode noise suppression filter for high speed differential signals using defected ground structure’. 2015 Asia-Pacific Symp. on Electromagnetic Compatibility (APEMC), Taiwan, 2015.
    14. 14)
      • 23. Bilotti, F.: ‘Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples’, IEEE Trans. Antennas Propag., 2007, 55, (8), pp. 22582267.
    15. 15)
      • 27. Sawyer, E.: ‘Using common-mode filtering structures with microstrip differential lines in a multilayer printed circuit board environment’. 44th European Microwave Conf., Rome, Italy, 2014.
    16. 16)
      • 30. Packiaraj, D.: ‘Miniaturized defected ground high isolation crossovers’, IEEE Microw. Wirel. Compon. Lett., 2013, 23, (7), pp. 347349.
    17. 17)
      • 19. Lim, J.-S.: ‘Design of low-pass filters using defected ground structure’, IEEE Trans. Microw. Theory Tech., 2005, 53, (8), pp. 25392545.
    18. 18)
      • 1. Bruce Archambeault, F.I.: ‘Review of printed-circuit-board level EMI/EMC issues and tools’, IEEE Trans. Electromagn. Compat., 2010, 52, (2), pp. 455461.
    19. 19)
      • 28. Avinash, K.G.: ‘Design of microstrip wideband bandpass filter using U shaped defected ground structure’. Int. Conf. on Microwave, Optical and Communication Engineering (ICMOCE), Bhubaneswar, India, 2015.
    20. 20)
      • 14. Wu, J.: ‘A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure’, IEEE Trans. Microw. Theory Tech., 2009, 57, (4), pp. 848855.
    21. 21)
      • 26. Safwat, A.M.E., Tretyakov, S., Raisanen, A.V.: ‘Defected ground and patch-loaded planar transmission lines’, IET Microw. Antennas Propag., 2009, 3, (2), pp. 195204.
    22. 22)
      • 4. Heidari, S., Mehri, M., Masoumi, N.: ‘System level estimation of a PCB electromagnetic radiated emission’. 20th Workshop on Signal and Power Integrity (SPI), Turin, Italy, May 2016.
    23. 23)
      • 13. Woo, D.-J.: ‘Novel U-slot and V-slot DGSs for bandstop filter with improved Q factor’, IEEE Trans. Microw. Theory Tech., 2006, 54, (6), pp. 28402847.
    24. 24)
      • 18. Chan, C.-H., Chou, C.-C., Chuang, H.-R.: ‘Integrated packaging design of low-cost bondwire interconnection for 60-GHz CMOS vital-signs radar sensor chip with millimeter-wave planar antenna’, IEEE Trans. Compon. Packag. Manuf. Technol., 2018, 8, (2), pp. 177185.
    25. 25)
      • 25. Keysight Technologies.: ‘Advanced design system documentation’, accessed on9 July 2018.
    26. 26)
      • 7. Masoumi, N., Elmasry, M.I., Safavi-Naeini, S.: ‘Fast and efficient parametric modeling of contact-to-substrate coupling’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2000, 19, pp. 12821292.
    27. 27)
      • 2. Khorrami, M.A.: ‘Effective power delivery filtering of mixed-signal systems with negligible radiated emission’, Electromagn. Compat. Mag., 2016, 5, (4), pp. 128132.
    28. 28)
      • 3. Armstrong, M.K.: ‘PCB design techniques for lowest-cost EMC compliance. 1’, Electron. Commun. Eng. J., 1999, 3311, (4), pp. 185194.
    29. 29)
      • 17. Lin, Y.-C., Lee, W.-H., Homg, T.-S., et al: ‘Full chip-package-board Co-design of broadband QFN bonding transition using backside via and defected ground structure’, IEEE Trans. Compon. Packag. Manuf. Technol., 2014, 4, (9), pp. 14701479.
    30. 30)
      • 16. Ahn, D.: ‘A novel dual microwave Doppler radar based vehicle detection sensor for parking lot occupancy detection’, IEICE Electron. Express, 2017, 14, (1), p. 20161087.
    31. 31)
      • 9. Lin, L., Zhou, L., Zhu, Y., et al: ‘Improvement in cavity and model designs of LDMOS power amplifier for suppressing metallic shielding cover effects’, IEEE Trans. Electromagn. Compat., 2016, 58, (5), pp. 16171628.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0463
Loading

Related content

content/journals/10.1049/iet-smt.2019.0463
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading