Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Sensitivity analysis of inverse problems in EM non-destructive testing

The inverse problem of electromagnetic (EM) non-destructive testing (NdT) consists of reconstructing material defect parameters invoking EM field measurements. Uncertainties of the configuration (e.g. imprecise constitutive and geometrical parameters) are inevitably present; hence, the reconstructed defect parameters are also uncertain. In this study, the different sources of uncertainty are ranked by means of sensitivity analysis. The model-based inversion (involving EM simulation) is computationally demanding; moreover, sensitivity analysis usually requires a vast number of repeated runs of the inversion. To overcome the computational complexity, surrogate models are applied at different levels. Interpolation on a sparse grid is used as a surrogate model of the EM simulation. The sensitivity of the reconstructed defect parameters concerning configuration uncertainties is characterised by means of Sobol indices. The Sobol indices are obtained from a polynomial chaos expansion surrogate model of the entire inversion scheme. A numerical example drawn from eddy-current NdT is thoroughly analysed to illustrate the proposed methodology and to demonstrate its performance.

References

    1. 1)
      • 2. Sabbagh, H.A., Radecki, D.J., Barkeshli, S., et al: ‘Inversion of eddy-current data and the reconstruction of 3-dimensional flaws’, IEEE Trans. Magn., 1990, 26, (2), pp. 626629.
    2. 2)
      • 17. Bilicz, S.: ‘Sparse grid surrogate models for electromagnetic problems with many parameters’, IEEE Trans. Magn., 2016, 52, (3), pp. 14.
    3. 3)
      • 28. Sudret, B., Marelli, S., Wiart, J.: ‘Surrogate models for uncertainty quantification: an overview’. 11th European Conf. Antennas and Propagation (EUCAP), Paris, France, 2017, pp. 793797.
    4. 4)
      • 7. Salucci, M., Anselmi, N., Oliveri, G., et al: ‘A non-linear kernel-based adaptive learning-by-examples method for robust NdT/NdE of conductive tubes’, J. Electromagn. Waves Appl., 2019, 33, (6), pp. 128.
    5. 5)
      • 27. Marelli, S., Sudret, B.: ‘UQLab user manual – polynomial chaos expansions’, (Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich, 2019. report # UQLab-V1.2-104).
    6. 6)
      • 24. Takagi, T., Uesaka, M., Miya, K.: ‘Electromagnetic NDE research activities in JSAEM’, in: Takagi, T., Bowler, J.R., Yoshida, Y. (Eds.): ‘Electromagnetic non-destructive evaluation. Vol. 1 of studies in applied electromagnetics and mechanics’ (IOS Press, Netherlands, 1997), pp. 916.
    7. 7)
      • 23. Sobol, I.M.: ‘Sensitivity estimates for non-linear mathematical models’, Math. Model. Comput. Exp., 1993, 1, (4), pp. 407414.
    8. 8)
      • 6. Cai, C., Bilicz, S., Rodet, T., et al: ‘Metamodel-based nested sampling for model selection in eddy-current testing’, IEEE Trans. Magn., 2017, 53, (4), pp. 18.
    9. 9)
      • 22. Mara, T.A., Tarantola, S., Annoni, P.: ‘Non-parametric methods for global sensitivity analysis of model output with dependent inputs’, Environ. Model. Softw., 2015, 72, pp. 173183.
    10. 10)
      • 20. Bungartz, H.J., Griebel, M.: ‘Sparse grids’, Acta Numer., 2004, 13, pp. 147269.
    11. 11)
      • 11. Moreau, O., Beddek, K., Clénet, S., et al: ‘Stochastic non-destructive testing simulation: sensitivity analysis applied to material properties in clogging of nuclear powerplant steam generators’, IEEE Trans. Magn., 2013, 49, pp. 18731876.
    12. 12)
      • 16. Fan, M., Wu, G., Cao, B., et al: ‘Uncertainty metric in model-based eddy current inversion using the adaptive Monte Carlo method’, Measurement, 2019, 137, pp. 323331.
    13. 13)
      • 26. Marelli, S., Sudret, B.: ‘Uqlab: a framework for uncertainty quantification in MATLAB’, 2014, pp. 25542563.
    14. 14)
      • 21. Weise, K., Carlstedt, M., Ziolkowski, M., et al: ‘Uncertainty analysis in Lorentz force eddy current testing’, IEEE Trans. Magn., 2016, 52, (3), p. 6200104.
    15. 15)
      • 18. Bilicz, S., Bingler, A.: ‘Low-rank approximations in sensitivity analysis applied to electromagnetic non-destructive evaluation’, in: ‘Electromagnetic non-destructive evaluation (XXII). studies in applied electromagnetics and mechanics’ (IOS Press, Amsterdam, Netherlands, 2019), 44, pp. 6267, DOI: 10.3233/SAEM190012.
    16. 16)
      • 3. Douvenot, R., Lambert, M., Lesselier, D.: ‘Adaptive metamodels for crack characterization in eddy-current testing’, IEEE Trans. Magn., 2011, 47, (4), pp. 746755.
    17. 17)
      • 15. Kersaudy, M.S., Sudret, B., Picon, O., et al: ‘Stochastic analysis of scattered field by building facades using polynomial chaos’, IEEE Trans. Antennas Propag., 2014, 62, (12), pp. 63826393.
    18. 18)
      • 25. Pávó, J., Lesselier, D.: ‘Calculation of eddy current testing probe signal with global approximation’, IEEE Trans. Magn., 2006, 42, (4), pp. 14191422.
    19. 19)
      • 5. Bilicz, S., Vazquez, E., Lambert, M., et al: ‘Characterization of a 3D defect using the expected improvement algorithm’, COMPEL: Int. J. Comput. Math. Electr. Electron. Eng., 2009, 28, (4), pp. 851864.
    20. 20)
      • 4. Rawashdeh, M.R., Rosell, A., Udpa, L., et al: ‘Optimized solutions for defect characterization in 2-D inverse eddy current testing problems using subregion finite-element method’, IEEE Trans. Magn., 2018, 54, (8), pp. 115.
    21. 21)
      • 14. Yuzugullu, O., Marelli, S., Erten, E., et al: ‘Global sensitivity analysis of a morphology based electromagnetic scattering model’. 2015 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Milan, Italy, 2015, pp. 27432746.
    22. 22)
      • 19. Bellman, R.E.: ‘Adaptive control processes: a guided tour’ (Princeton University Press, USA, 1961).
    23. 23)
      • 12. Bingler, A., Bilicz, S.: ‘Sensitivity analysis using a sparse grid surrogate model in electromagnetic NDE’, in: Lesselier, D., Reboud, C. (Eds.): ‘Electromagnetic non-destructive evaluation (XXI). vol. 43 of studies in applied electromagnetics and mechanics’ (IOS Press, Netherlands, 2018), pp. 152159.
    24. 24)
      • 10. Sudret, B.: ‘Global sensitivity analysis using polynomial chaos expansions’, Reliab. Eng. Syst. Saf., 2008, 93, (7), pp. 964979.
    25. 25)
      • 1. Blitz, J.: ‘Electrical and magnetic methods of non-destructive testing’ (IOP Publishing, Netherlands, 1991).
    26. 26)
      • 9. Miorelli, R., Artusi, X., Reboud, C.: ‘An efficient adaptive database sampling strategy with applications to eddy current signals’, Simul. Model. Pract. Theory, 2018, 80, pp. 7588.
    27. 27)
      • 8. Zhu, P., Cheng, Y., Banerjee, P., et al: ‘A novel machine-learning model for eddy current testing with uncertainty’, NDT&E Int., 2019, 101, pp. 104112.
    28. 28)
      • 13. Bontinck, Z., Lass, O., Schöps, S., et al: ‘Robust optimisation formulations for the design of an electric machine’, IET Sci. Meas. Technol., 2018, 12, pp. 939948.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0370
Loading

Related content

content/journals/10.1049/iet-smt.2019.0370
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address