Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Sensitivity analysis of inverse problems in EM non-destructive testing

Sensitivity analysis of inverse problems in EM non-destructive testing

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Science, Measurement & Technology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The inverse problem of electromagnetic (EM) non-destructive testing (NdT) consists of reconstructing material defect parameters invoking EM field measurements. Uncertainties of the configuration (e.g. imprecise constitutive and geometrical parameters) are inevitably present; hence, the reconstructed defect parameters are also uncertain. In this study, the different sources of uncertainty are ranked by means of sensitivity analysis. The model-based inversion (involving EM simulation) is computationally demanding; moreover, sensitivity analysis usually requires a vast number of repeated runs of the inversion. To overcome the computational complexity, surrogate models are applied at different levels. Interpolation on a sparse grid is used as a surrogate model of the EM simulation. The sensitivity of the reconstructed defect parameters concerning configuration uncertainties is characterised by means of Sobol indices. The Sobol indices are obtained from a polynomial chaos expansion surrogate model of the entire inversion scheme. A numerical example drawn from eddy-current NdT is thoroughly analysed to illustrate the proposed methodology and to demonstrate its performance.

References

    1. 1)
      • 2. Sabbagh, H.A., Radecki, D.J., Barkeshli, S., et al: ‘Inversion of eddy-current data and the reconstruction of 3-dimensional flaws’, IEEE Trans. Magn., 1990, 26, (2), pp. 626629.
    2. 2)
      • 17. Bilicz, S.: ‘Sparse grid surrogate models for electromagnetic problems with many parameters’, IEEE Trans. Magn., 2016, 52, (3), pp. 14.
    3. 3)
      • 28. Sudret, B., Marelli, S., Wiart, J.: ‘Surrogate models for uncertainty quantification: an overview’. 11th European Conf. Antennas and Propagation (EUCAP), Paris, France, 2017, pp. 793797.
    4. 4)
      • 7. Salucci, M., Anselmi, N., Oliveri, G., et al: ‘A non-linear kernel-based adaptive learning-by-examples method for robust NdT/NdE of conductive tubes’, J. Electromagn. Waves Appl., 2019, 33, (6), pp. 128.
    5. 5)
      • 27. Marelli, S., Sudret, B.: ‘UQLab user manual – polynomial chaos expansions’, (Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich, 2019. report # UQLab-V1.2-104).
    6. 6)
      • 24. Takagi, T., Uesaka, M., Miya, K.: ‘Electromagnetic NDE research activities in JSAEM’, in: Takagi, T., Bowler, J.R., Yoshida, Y. (Eds.): ‘Electromagnetic non-destructive evaluation. Vol. 1 of studies in applied electromagnetics and mechanics’ (IOS Press, Netherlands, 1997), pp. 916.
    7. 7)
      • 23. Sobol, I.M.: ‘Sensitivity estimates for non-linear mathematical models’, Math. Model. Comput. Exp., 1993, 1, (4), pp. 407414.
    8. 8)
      • 6. Cai, C., Bilicz, S., Rodet, T., et al: ‘Metamodel-based nested sampling for model selection in eddy-current testing’, IEEE Trans. Magn., 2017, 53, (4), pp. 18.
    9. 9)
      • 22. Mara, T.A., Tarantola, S., Annoni, P.: ‘Non-parametric methods for global sensitivity analysis of model output with dependent inputs’, Environ. Model. Softw., 2015, 72, pp. 173183.
    10. 10)
      • 20. Bungartz, H.J., Griebel, M.: ‘Sparse grids’, Acta Numer., 2004, 13, pp. 147269.
    11. 11)
      • 11. Moreau, O., Beddek, K., Clénet, S., et al: ‘Stochastic non-destructive testing simulation: sensitivity analysis applied to material properties in clogging of nuclear powerplant steam generators’, IEEE Trans. Magn., 2013, 49, pp. 18731876.
    12. 12)
      • 16. Fan, M., Wu, G., Cao, B., et al: ‘Uncertainty metric in model-based eddy current inversion using the adaptive Monte Carlo method’, Measurement, 2019, 137, pp. 323331.
    13. 13)
      • 26. Marelli, S., Sudret, B.: ‘Uqlab: a framework for uncertainty quantification in MATLAB’, 2014, pp. 25542563.
    14. 14)
      • 21. Weise, K., Carlstedt, M., Ziolkowski, M., et al: ‘Uncertainty analysis in Lorentz force eddy current testing’, IEEE Trans. Magn., 2016, 52, (3), p. 6200104.
    15. 15)
      • 18. Bilicz, S., Bingler, A.: ‘Low-rank approximations in sensitivity analysis applied to electromagnetic non-destructive evaluation’, in: ‘Electromagnetic non-destructive evaluation (XXII). studies in applied electromagnetics and mechanics’ (IOS Press, Amsterdam, Netherlands, 2019), 44, pp. 6267, DOI: 10.3233/SAEM190012.
    16. 16)
      • 3. Douvenot, R., Lambert, M., Lesselier, D.: ‘Adaptive metamodels for crack characterization in eddy-current testing’, IEEE Trans. Magn., 2011, 47, (4), pp. 746755.
    17. 17)
      • 15. Kersaudy, M.S., Sudret, B., Picon, O., et al: ‘Stochastic analysis of scattered field by building facades using polynomial chaos’, IEEE Trans. Antennas Propag., 2014, 62, (12), pp. 63826393.
    18. 18)
      • 25. Pávó, J., Lesselier, D.: ‘Calculation of eddy current testing probe signal with global approximation’, IEEE Trans. Magn., 2006, 42, (4), pp. 14191422.
    19. 19)
      • 5. Bilicz, S., Vazquez, E., Lambert, M., et al: ‘Characterization of a 3D defect using the expected improvement algorithm’, COMPEL: Int. J. Comput. Math. Electr. Electron. Eng., 2009, 28, (4), pp. 851864.
    20. 20)
      • 4. Rawashdeh, M.R., Rosell, A., Udpa, L., et al: ‘Optimized solutions for defect characterization in 2-D inverse eddy current testing problems using subregion finite-element method’, IEEE Trans. Magn., 2018, 54, (8), pp. 115.
    21. 21)
      • 14. Yuzugullu, O., Marelli, S., Erten, E., et al: ‘Global sensitivity analysis of a morphology based electromagnetic scattering model’. 2015 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Milan, Italy, 2015, pp. 27432746.
    22. 22)
      • 19. Bellman, R.E.: ‘Adaptive control processes: a guided tour’ (Princeton University Press, USA, 1961).
    23. 23)
      • 12. Bingler, A., Bilicz, S.: ‘Sensitivity analysis using a sparse grid surrogate model in electromagnetic NDE’, in: Lesselier, D., Reboud, C. (Eds.): ‘Electromagnetic non-destructive evaluation (XXI). vol. 43 of studies in applied electromagnetics and mechanics’ (IOS Press, Netherlands, 2018), pp. 152159.
    24. 24)
      • 10. Sudret, B.: ‘Global sensitivity analysis using polynomial chaos expansions’, Reliab. Eng. Syst. Saf., 2008, 93, (7), pp. 964979.
    25. 25)
      • 1. Blitz, J.: ‘Electrical and magnetic methods of non-destructive testing’ (IOP Publishing, Netherlands, 1991).
    26. 26)
      • 9. Miorelli, R., Artusi, X., Reboud, C.: ‘An efficient adaptive database sampling strategy with applications to eddy current signals’, Simul. Model. Pract. Theory, 2018, 80, pp. 7588.
    27. 27)
      • 8. Zhu, P., Cheng, Y., Banerjee, P., et al: ‘A novel machine-learning model for eddy current testing with uncertainty’, NDT&E Int., 2019, 101, pp. 104112.
    28. 28)
      • 13. Bontinck, Z., Lass, O., Schöps, S., et al: ‘Robust optimisation formulations for the design of an electric machine’, IET Sci. Meas. Technol., 2018, 12, pp. 939948.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0370
Loading

Related content

content/journals/10.1049/iet-smt.2019.0370
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address