access icon free Effects of voltage forms, pressure, and adsorbent on the SF6 decomposition characteristics under corona discharge

An experimental and testing platform was established to comparative study the decomposition characteristic of SF6 under different voltage waveform (negative direct current (DC) voltage, positive DC voltage, and alternating voltage), and investigate the influence of pressure and adsorbent. Content variation of typical products under different conditions and the influence mechanism were observed and analysed in detail. The results indicate that SF6 decomposition characteristics are closely related to a voltage waveform, pressure, and adsorbent. Concentrations of by-products under AC voltage are higher than those under DC voltage and SF6 decomposes more easily under positive voltage than negative voltage, which can be explained by different discharge energy and distribution characteristic of space charges. The values of typical products show an obvious downward trend with pressure due to falling discharge energy, volume of active region and dissociation rate of SF6. Concentrations of typical products including SOF2, SO2F2, and SO2 decrease dramatically after adding adsorbents because of physical absorption and chemisorption.

Inspec keywords: dielectric materials; discharges (electric); insulating materials; chemisorption; corona; materials properties; biodegradable materials

Other keywords: experimental testing platform; alternating voltage; pressure; insulation degradation; gaseous dielectric material; distribution characteristic; absorption; discharge energy; DC voltage; adsorbent; AC voltage; voltage waveform; chemisorption; SF6 decomposition characteristics; insulation defects; corona discharge

Subjects: Environmental issues; Gaseous insulation, breakdown and discharges; Engineering materials

References

    1. 1)
      • 5. Andreas, R., Ulrich, S., Michael, F., et al: ‘Improving GIS disconnectors for future HVDC applications’, IEEE Trans. Power Deliv., 2019, 34, (1), pp. 160168.
    2. 2)
      • 9. Wang, Y., Ji, S., Zhang, Q., et al: ‘Experimental investigations on low-energy discharge in SF6 under low-moisture conditions’, IEEE Trans. Plasma Sci., 2014, 42, (2), pp. 307314.
    3. 3)
      • 13. Lin, T., Han, D., Zhang, G.: ‘Formation characteristics of SF6 decomposition under partial discharge induced by metal protrusions with varying degrees of severity’, Electr. Power Compon. Syst., 2014, 42, (16), pp. 18391848.
    4. 4)
      • 19. Ding, W., Zhou, W., Ren, X., et al: ‘Decomposition characteristics of SF6 under partial discharges with point-to-plane electrode defect’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (5), pp. 17271736.
    5. 5)
      • 33. Christophorou, L., Pinnaduwage, L.: ‘Basic physics of gaseous dielectrics’, IEEE Trans. Electr. Insul., 1990, 25, (1), pp. 5574.
    6. 6)
      • 31. Tang, J., Rao, J., Tang, B., et al: ‘Investigation on SF6 spark decomposition characteristics under different pressures’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (4), pp. 20662075.
    7. 7)
      • 14. Gao, Q., Niu, C., Wang, X., et al: ‘Chemical kinetic modeling and experimental study of SF6 decomposition byproducts in 50 Hz AC point-plane corona discharges’, J. Phys. D, Appl. Phys., 2018, 51, (29), pp. 119.
    8. 8)
      • 32. Zhao, H., Li, X., Tang, N., et al: ‘Dielectric properties of fluoronitriles/CO2 and SF6/N2 mixtures as a possible SF6 substitute gas’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 13321339.
    9. 9)
      • 30. Belarbi, A., Pradayrol, C., Casanovas, J.: ‘Influence of discharge production conditions, gas pressure, current intensity and voltage type, on SF6 dissociation under point-plane corona discharges’, J. Appl. Phys., 1995, 77, (4), pp. 13981406.
    10. 10)
      • 1. Flourentzou, N., Agelidis, V., Demetriades, G., et al: ‘VSC-based HVDC power transmission systems: an overview’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 592602.
    11. 11)
      • 26. Van Brunt, R., Sauers, I.: ‘Gas phase hydrolysis of SOF2 and SOF4’, J. Chem. Phys., 1986, 85, (8), pp. 43764380.
    12. 12)
      • 4. Li, C., Li, Y., Cao, Y., et al: ‘Understanding DC-side high-frequency resonance in MMC–HVDC system’, IET Gener. Transm. Distrib., 2018, 12, (10), pp. 22472255.
    13. 13)
      • 15. Tang, J., Liu, F., Meng, Q., et al: ‘Partial discharge recognition through an analysis of SF6 decomposition products part 2: feature extraction and decision tree-based pattern recognition’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (1), pp. 3743.
    14. 14)
      • 12. Tsai, W.: ‘The decomposition products of sulphur hexafluoride (SF6): reviews of environmental and health risk analysis’, J. Fluor. Chem., 2007, 128, pp. 13451352.
    15. 15)
      • 23. Yang, D., Zeng, F., Yang, X., et al: ‘Comparison of SF6 decomposition characteristics under negative DC partial discharge initiated by two kinds of insulation defects’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (3), pp. 863872.
    16. 16)
      • 16. Zhong, L., Ji, S., Liu, K., et al: ‘Decomposition characteristics of SF6 under three typical defects and the diagnostic application of triangle method’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 25942606.
    17. 17)
      • 22. Tang, J., Yang, D., Zeng, F., et al: ‘Correlation analysis between SF6 decomposed components and negative DC partial discharge strength initiated by needle-plate defect’, IEEJ. Trans. Electr. Electron. Eng. Transm. Distrib., 2018, 13, (13), pp. 382389.
    18. 18)
      • 25. Van Brunt, R., Herron, J.: ‘Fundamental processes of SF6 decomposition and oxidation in glow and corona discharges’, IEEE Trans. Dielectr. Electr. Insul., 1990, 25, (1), pp. 7594.
    19. 19)
      • 7. Zhang, L., Wang, S., Sun, L., et al: ‘Prediction model of voltage–time characteristics for SF6 long gap under VFTO and lightning impulse voltage’, IET Gener. Transm. Distrib., 2018, 12, (4), pp. 880885.
    20. 20)
      • 27. Van Brunt, R., Siddagangappa, M.: ‘Identification of corona discharge-induced SF6 oxidation mechanisms using SF6/18O2/H216O and SF6/16O2/H218O gas mixtures’, Plasma Chem. Plasma Proc., 1988, 8, (2), pp. 207223.
    21. 21)
      • 20. Han, D., Lin, T., Zhang, G., et al: ‘SF6 gas decomposition analysis under point-to-plane 50 Hz AC corona discharge’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (2), pp. 799805.
    22. 22)
      • 29. Liu, M., Tang, J., Liu, X., et al: ‘Study on the characteristic decomposition components of DC SF6-insulated equipment under positive DC partial discharge’, Energies, 2017, 640, (10), pp. 113.
    23. 23)
      • 34. Van Brunt, R., Herron, J.: ‘Plasma chemical model for decomposition of SF6 in a negative glow corona discharge’, Phys. Scr., 1994, 53, pp. 929.
    24. 24)
      • 18. Ji, S., Zhong, L., Wang, Y., et al: ‘SF6 decomposition of typical CT defect models’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 28642870.
    25. 25)
      • 11. Chu, F.: ‘SF6 decomposition in gas-insulated equipment’, IEEE Trans. Dielectr. Electr. Insul., 1986, 21, (5), pp. 396725.
    26. 26)
      • 21. Zeng, F., Tang, J., Zhang, X., et al: ‘Influence regularity of trace H2O on SF6 decomposition characteristics under partial discharge of needle-plate electrode’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (1), pp. 287295.
    27. 27)
      • 3. Song, Y., Sun, J., Saeedifard, M., et al: ‘Reducing the fault-transient magnitudes in multiterminal HVDC grids by sequential tripping of hybrid circuit breaker modules’, IEEE Trans. Ind. Electron., 2019, 66, (9), pp. 72907299.
    28. 28)
      • 10. Tang, J., Pan, J., Zhang, X., et al: ‘Correlation analysis between SF6 decomposed components and charge magnitude of partial discharges initiated by free metal particles’, IET Sci. Meas. Technol., 2014, 8, (4), pp. 170177.
    29. 29)
      • 8. Maiss, M., Brenninkmeijer, C.: ‘Atmospheric SF6: trends, sources and prospects’, Environ. Sci. Technol., 1998, 32, pp. 30773086.
    30. 30)
      • 2. Mitra, B., Chowdhury, B., Manjrekar, M., et al: ‘HVDC transmission for access to off-shore renewable energy: a review of technology and fault detection techniques’, IET Renew. Power Gener., 2018, 12, (13), pp. 15631571.
    31. 31)
      • 28. Tang, J., Zeng, F., Zhang, X., et al: ‘Influence regularity of trace O2 on SF6 decomposition characteristics and its mathematical amendment under partial discharge’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (1), pp. 105115.
    32. 32)
      • 36. Morrow, R.: ‘A survey of the electron and ion transport properties of SF6’, IEEE Trans. Plasma Sci., 1986, 14, (3), pp. 234239.
    33. 33)
      • 6. Metwally, I.: ‘Theoretical analysis of particle-initiated corana activities in hybrid gas-insulated transmission lines’, Electr. Power Syst. Res., 2003, 66, pp. 123131.
    34. 34)
      • 24. Zhong, L., Ji, S., Wang, F., et al: ‘Theoretical study of the chemical decomposition mechanism and model of sulfur hexafluoride (SF6) under corona discharge’, J. Fluor. Chem., 2019, 220, pp. 6168.
    35. 35)
      • 17. Chen, J., Zhou, W., Yu, J., et al: ‘Insulation condition monitoring of epoxy spacers in GIS using a decomposed gas CS2’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (6), pp. 21522157.
    36. 36)
      • 35. Wang, Y., Champion, R., Doverspike, L., et al: ‘Collisional electron detachment and decomposition cross sections for SF6, SF5, and F on SF6 and rare gas targets’, J. Chem. Phys., 1989, 91, (4), pp. 22542260.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-smt.2019.0326
Loading

Related content

content/journals/10.1049/iet-smt.2019.0326
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading